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About the Course

Thanks for taking Linear Algebra with me! It is one of my favorite classes to teach. You
may be asking yourself (or have asked yourself), “What is Linear Algebra, and why do I
have to take this class?”

“I believe that linear algebra is the most important subject in college mathematics. Isaac
Newton would not agree! But he isn’t taking mathematics in the 21st century.”

-Gilbert Strang

I, and many other mathematicians, definitely agree with Strang in that Linear Algebra has
emerged as a giant in mathematics -especially now that we have computers to do what used
to be extremely tedious work. It has such a vast set of applications and touches almost every
mathematical subject. Linear algebra provides “essential preparation for advanced work in
the sciences, statistics, and computing. Linear algebra also introduces students to discrete
mathematics, algorithmic thinking, a modicum of abstraction, moderate sophistication in no-
tation, and simple proofs. Linear algebra helps students develop facility with visualization,
see connections among mathematical areas, and appreciate the power of abstract thinking.”1

Linear algebra is basically the study of multivariate linear systems and transformations and,
in my opinion, is at its core trying to solve Two Fundamental Problems:

1. Solving Ax = b, and

2. Diagonalizing a matrix A (AKA Eigenvalue Problems).

The first problem relates to exploiting linear methods to solve complex and dynamical sys-
tems and situations. Basically, it is using one of the best problem-solving techniques mathe-
maticians use, what I like to call the “Wouldn’t it be nice if...” approach. That is, real life is a
mess and we often have to deal with really complex functions (if we are even lucky enough to
have a function at all!) which are difficult to manage. So instead we use linear functions (lines
and planes) to approximate or model the complex, real-world situation, which is much easier.

The second problem relates to simplifying our system so that we can more easily solve or
approximate systems. The fact that some systems don’t have solutions leads directly into
the mathematical field of Numerical Analysis and we will dive into some basic numerical
analysis in this course. Because so many situations in life can be modeled linearly, Linear
Algebra shows up in many topics including (but not exhaustively) “Markov chains, graph
theory, correlation coefficients, cryptology, interpolation, long-term weather prediction, the
Fibonacci sequence, difference equations, systems of linear differential equations, network
analysis, linear least squares, graph theory, Leslie population models, the power method
of approximating the dominant eigenvalue, linear programming, computer graphics, cod-
ing theory, spectral decomposition, principal component analysis, discrete and continuous

1Schumacher, etc. 2015 2015 CUPM Curriculum Guide to Majors in the Mathematical Sciences 37,39
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dynamical systems, iterative solutions of linear systems, image processing, and traffic flow.”1

Another reason you are taking this course (which perhaps is why anyone is required to take
a mathematics class) is to learn how to think abstractly through problem solving.

I hope you will enjoy this semester and learn a lot! Some students struggle at first with
Linear Algebra because it is one of the first math courses students take which starts to
really exploit abstract notation and thinking. Hang in there! It just takes time to digest.
Please make use of my office hours and plan to work hard in this class. My classes have a
high work load (as all math classes usually do!), so make sure you stay on top of your
assignments and get help early. Remember you can also email me questions if you can’t
make my office hours or make an appointment outside of office hours for help. When I am at
Lewis, I usually keep the door open and feel free to pop in at any time. If I have something
especially pressing, I may ask you to come back at a different time, but in general, I am
usually available. The Practice Problems for Exams are at the end of this course packet,
and I have most likely handed out separate packets for the HW Assignments and Labs as well.

We have worked hard to create this course packet for you, but it is still a work in progress.
Please be understanding of the typos we have not caught, and politely bring them to my
attention so I can fix them for the next time I teach this course. I look forward to meeting
you and guiding you through the wonderful course that is Linear Algebra.

Cheers,
Professor Smith, Professor Stratton, and Dr. Harsy

Acknowledgments: No math teacher is who they are without a little help. I would like to
thank two professors in particular that have had an impact on the way I teach and approach
problems: Dr. Amanda Harsy of our own Lewis University (who also teaches a section of this
course!) and Dr. Nathan Krislock of Northern Illinois University. I also want to thank Dr.
Heather Moon, Dr. Marie Snipes, Dr. Tom Asaki, Dr. Tim Chartier, Dr. Scott Kaschner,
the members from both the IOLA and MathVote projects for sharing some of their resources
and labs from their own courses. And finally, we would like to thank you and all the other
students for making this job worthwhile and for all the suggestions and encouragement you
have given me over the years to improve.
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1 Solving Systems of Linear Equations

1.1 MA 307 –ICE 0 -Motivation for Linear Algebra

1. Think of a number between 1 and 20. Double the number and then add 10. Next
divide by 2 and then subtract your original number. What number did you get?

2. What is linear algebra used for?

In algebra class, we learned how to solve systems of equations. Let’s review some of these!

4. A system of linear equations could not have exactly solutions.
(a) 0
(b) 1
(c) 2
(d) infinite
(e) All of these are possible numbers of solutions to a system of linear equations.

5. What is the solution to the following system of equations?
2x+ y = 3
3x− y = 7

(a) x = 4 and y = −5
(b)x = 4 and y = 5
(c) x = 2 and y = −1
(d) There are an infinite number of solutions to this system.
(e) There are no solutions to this system.

6. Create a set of linear equations (called a linear system) that has no solutions.
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7. We have a system of three linear equations with two unknowns, as plotted in the graph
below. How many solutions does this system have?

(a) 0
(b) 1
(c) 2
(d) 3
(e) Infinite

8. Set up and solve the the following problem: “There are three classes of grain, of which three

bundles of the first class, two of the second, and one of the third make 39 measures. Two of

the first, three of the second, and one of the third make 34 measures. And one of the first,

two of the second, and three of the third make 26 measures. How many measures of grain

are contained in one bundle of each class?”

-Jiuzhang Suanshu, a Chinese manuscript from about 200 BC. 1

1When Life is Linear pg 3.
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1.2 Linear Systems and Matrix Notation

During your Ice sheet, we reviewed solving simple systems of equations. This is very nice
when we have only a few variables, but it quickly gets tedious when we have systems with
even more variables. Up until now, our method for solving these systems has been a little
ad-hoc. In this section we will discuss an algorithm which will help us solve larger systems
of equations. Now, this algorithm may seem weird and tedious, and is a rather uninspiring
way to start this course, but it has allowed us to program computer to do this work for us.
And after HW 1, you will be able to use Octave, Matlab, Sage, or a calculator to do this for
you. Let’s get started...

Definition 1.1. A linear combination of variables (unknowns) x1, ..., xn is an expression
in the form:

where the a′is (a1, a2, ..., an) are real numbers which are called the combination’s

Examples:

Non-Examples:

Definition 1.2. We can turn a linear combination into a linear equation by adding “= b′′i :

Then we can create a system of linear equations:

a1,1x1 + a1,2x2 + a1,3x3 + ...+ a1,nxn = b1
a2,1x1 + a2,2x2 + a2,3x3 + ...+ a2,nxn = b2

...
an,1x1 + an,2x2 + an,3x3 + ...+ an,nxn = bn

Definition 1.3. A solution to a linear system is an “n-tuple”
which solves each equation in the system.
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a1,1x1 + a1,2x2 + a1,3x3 + ...+ a1,nxn = b1
a2,1x1 + a2,2x2 + a2,3x3 + ...+ a2,nxn = b2

...
an,1x1 + an,2x2 + an,3x3 + ...+ an,nxn = bn

We would like to be able to record a linear system compactly. We can do this by using
Matrices:

The Coefficient Matrix:

A = (aij) =




a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
...

...
...

...
...

am,1 am,2 am,3 . . . am,n




The Augmented Matrix:

(
A b

)
=




a1,1 a1,2 a1,3 . . . a1,n b1
a2,1 a2,2 a2,3 . . . a2,n b2
...

...
...

...
...

...
am,1 am,2 am,3 . . . am,n bn




Example 1.1. Write the following system as an augmented matrix:
x1 − 3x2 + 5x3 − 2x4 = 0
x2 − 3x3 = 2
9x3 − 4 = 0
x4 = 1

Example 1.2. a) Convert the following augmented matrix back into a system of equations:

2 1 0 0
0 3 0 6
1 −1 1 −4




b) When you solve this system, you get x = −1, y = 2, z = −1. Is this an equivalent form of
the system of equations above?

c) Write this system in augmented form.
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Wouldn’t it have been nice if we were given the latter system to solve rather than the initial
system? It turns out we have a name for the “nicest form” of an augmented matrix.

That is we want an augmented matrix that has the maximum number of zeros, but doesn’t
change the original system’s solution. It turns out there is a an algorithm we can use to
convert a system into this “nice form.” But first, let’s describe what we mean by “nice” a
little more formally.

1.3 Echelon Forms

Definition 1.4. The leading term of a row is the leftmost nonzero term in that row. If a
row has all zeros, it has no leading term.

Definition 1.5. A Matrix/system is in echelon form if

1. Every leading term is in a column to the left of the leading term of the row below it.

2. Any zero rows are at the bottom of the matrix.

Examples:



1 2 3 5
0 4 1 −2
0 0 3 1


,




1 2 0 5
0 5 1 0
0 0 0 0
0 0 0 0


,



0 1 5
0 0 1
0 0 0


 ,



1 0 0
0 1 0
0 0 1


 ,




0 1 5 0
0 0 1 0
0 0 0 1
0 0 0 0




Example 1.3. Which of the following matrices are in echelon form?


0 1 5
1 0 0
0 1 0






1 0 0 5
2 1 1 −2
0 0 0 0


,



2 0 4
0 1 0
0 0 0






1 0 5
0 0 0
0 1 0


,



0 0 0
0 0 0
0 0 0
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Definition 1.6. In an echelon form system, a pivot position is an entry that corresponds
to a leading term in the echelon form of A. Variables that correspond to a pivot position are
called pivot variables.

Definition 1.7. In an echelon form system, the variables that are not leading are called
variables.

Example 1.4. Which variable(s) are pivots? Which variable(s) are free for the following
matrix representation with variables x1, x2, x3, x4?

2 4 0 4 0
0 9 18 3 0
0 0 1 1 0


.

Definition 1.8. A Matrix/system is in reduced row echelon form if

1. It is in echelon form.

2. All pivot positions contain a 1.

3. The only nonzero term in a pivot column is in pivot position.

Examples:
[
1 0 0 5
0 1 1 2

]
,



0 1 0 −2 0 0
0 0 1 −6 0 3
0 0 0 0 0 0


,



1 0 0
0 1 0
0 0 1


,



0 0 0
0 0 0
0 0 0




Example 1.5. Which of the following matrices are in Reduced Row Echelon form?

A =

[
5 0 0 1
0 1 0 2

]
B =



1 0 0 1
0 0 1 0
0 0 5 2


 C =



1 2 0 1
0 0 1 0
0 0 0 0




1.4 Gauss’s Method for Solving Systems of Linear Equations

It would be nice if we were given a system whose matrix form was in echelon form or even
better, reduced row echelon form (RREF) (sometimes this form is called row reduced ech-
elon form). In algebra courses, you often solve a system of 2 (maybe 3) equations using
substitution or elimination. Unfortunately, this can get tricky when we have large systems
though. Luckily we have an algorithm to help us called Gaussian Elimination.

6



Gaussian Elimination/ Gauss’s Method: If a linear system is changed to another by
one of the operations below, then the two systems have the same set of solutions (that is,
they are equivalent systems).

1. Swapping: Swap one row (equation) with another.

2. Rescaling: Multiply one row (equation) by a nonzero constant.

3. Row Combination: Replace one row (equation) by the sum of itself and a multiple
of another.

Definition 1.9. The 3 operations above are called elementary row operations. Note
that they are reversible.

Basic Strategy:
Replace one system of equations with an equivalent system that is easier to solve.

In the end, we want a matrix that is as close as it can be to looking like:




1 0 0 0 0 0 . . . 0 ∗
0 1 0 0 0 0 . . . 0 ∗
0 0 1 0 0 0 . . . 0 ∗
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 ∗




Why is this form helpful?

Tie in with Echelon Forms:
Notice there seems to be two “steps” in Gaussian Elimination:

Step 1: Get matrix in “Upper Triangular Form:




1 ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗
0 1 ∗ ∗ ∗ ∗ . . . ∗ ∗
0 0 1 ∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 ∗




Note this can also be something like:




1 ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗
0 1 ∗ ∗ ∗ ∗ . . . ∗ ∗
0 0 1 ∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 ∗
0 0 0 0 0 0 . . . 0 ∗
0 0 0 0 0 0 . . . 0 ∗
0 0 0 0 0 0 . . . 0 ∗




Step 2: Back substitute to get the matrix in Row Reduced Reduced Echelon Form.

Note each matrix’s Row Reduced Echelon Form is unique!
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Example 1.6. Solve the linear system represented by the augmented matrix using Gaussian
Elimination:



6 3 −2 −4
0 2 −6 −8
1 0 2 3




What could you be asking yourself about linear systems?

1.

2.
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We can use Guassian Elimination to identify how many solutions we will have in a system.

Example 1.7. Convert the following augmented matrices back into a system of equations:

a)



1 0 0 2
0 1 0 0
0 0 1 −3


 ⇒

c)



1 0 0 2
0 1 0 0
0 0 0 −3


 ⇒

b)



1 0 0 2
0 1 0 0
0 0 0 0


 ⇒

d)



1 0 1 2
0 1 0 0
0 0 0 0


 ⇒

Theorem 1.1. A system of equations can have solutions, exactly
solutions, or solutions.

Definition 1.10. A system is called consistent if it has or solutions.
A system is called inconsistent if it has solutions.

Example 1.8. Solve the system of equations using Gaussian Elimination.

x1 + x2 + x3 = 4
x1 + x2 + x3 = 0
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Example 1.9. Solve the system of equations using Gaussian Elimination.

2x + 2y + 2z = 4
−x + y − 2z = −2
x + y + z = 2

10



1.5 ICE 1: Solving Systems of Equations

1. What is the solution to the following system of equations? (Note this is called a homogeneous

system since the right-hand-sides of each equation is 0.)
x+ 2y + z = 0
x+ 3y − 2z = 0

Archer has reduced this system into Row Reduced Echelon Form (RREF):

(
1 0 7 0
0 1 −3 0

)

(a)



x
y
z


= {(−7z, 3z, z)|z ∈ R}

(b)



x
y
z


 = {(7z,−3z, z)|z ∈ R}

(c)



x
y
z


 = {(−7z, 3z, 0)|z ∈ R}

(d) None of the above.
(e) More than one of the above.

Bonus question: How many vectors are in this solution set?

2. What is the solution to the following system of equations? (Note this system is called a

non-homogeneous system.)

x+ 2y + z = 3
x+ 3y − 2z = 4

Eva has reduced this system into RREF:

(
1 0 7 1
0 1 −3 1

)

(a)



x
y
z


 = {(7 + z, 3 + z, z)|z ∈ R}

(b)



x
y
z


 = {(−1− 7z,−1 + 3z, z)|z ∈ R}

(c)



x
y
z


 = {(1− 7z, 1 + 3z, z)|z ∈ R}

(d) None of the above.
(e) More than one of the above.
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Bonus question: What is the relationship between the previous two solution sets?

3. What is the solution to the following system of equations (called a non-homogeneous
system)?
x+ 2y + z =−2
x+ 3y − 2z = 1

Archer has reduced this system into RREF:

(
1 0 7 −8
0 1 −3 3

)

(a)



x
y
z


 = {(−8− 7z, 3 + 3z, z)|z ∈ R}

(b)



x
y
z


 = {(8− 7z,−3 + 3z, z)|z ∈ R}

(c)



x
y
z


 = {(−8 + 7z, 3− 3z,−z)|z ∈ R}

(d) None of the above.
(e) More than one of the above.

4. What is the value of a so that the linear system represented by the following matrix
would have infinitely many solutions?(
2 6 8
1 a 4

)

(a) a = 0
(b) a = 2
(c) a = 3
(d) This is not possible.
(e) More than one of the above
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5. Solve the system represented by the augmented matrix




1 7 3 −4
0 1 −1 3
0 0 0 1
0 0 1 −2


. [Hint: Eva

says that you can answer this without doing any work!]

6. Rewrite the linear system represented by the augmented matrix below in Row Reduced

Echelon Form to find the solution set:




1 −1 0 0 −4
0 1 −3 0 −7
0 0 1 −3 −1
0 0 0 1 −3


 .

7. Let matrix R be the reduced row echelon form of matrix A. True or False The solutions
to Rx = 0 are the same as the solutions to Ax = 0.

(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident
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8. Let matrix R be the reduced row echelon form of matrix A. True or False: The solu-
tions to Rx = b are the same as the solutions to Ax = b.

(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident

9. Solve the system from Jiuzhang Suanshu.

3x+ 2y + z = 39
2x+ 3y + z = 34
x+ 2y + 3z = 26
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2 Vector Spaces

Today we are going to introduce the “Playground” that Linear Algebra exists in along with
a set of usual suspects that play in this arena. If we were doing a more theoretical linear
algebra, we would do lots of proofs in this section. For our purposes, treat this mainly as
a “Who’s Who” and learning about what two operations we can use in our “playground.”
Seriously though, there is a lot of nice theory here which provides the underpinning for all
we do later this semester.

2.1 Review of Lab 1

In Lab 1, we noticed that if you add two images, you get a new image. We also saw that if
you multiply an image by a scalar, you get a new image. We also saw in Lab that (rectan-
gular pixelated) images can be represented as a rectangular array of values or equivalently
as a rectangular array of grayscale patches. This is a very natural idea especially since
the advent of digital photography. It is tempting to consider an image (or image data) as a
matrix – after all, it certainly looks like one. Recall, we defined an image in the following way:

Definition 2.1. An image is a finite ordered list of real values with an associated geometric
array description.

We also defined pixel-wise addition and scalar multiplication of images.
Three examples of arrays along with an index system specifying the order of patches can
be seen in Figure below. Each patch would also have a numerical value indicating the
brightness of the patch (not shown). The first is a regular pixel array commonly used for
digital photography. The second is a hexagon pattern which also nicely tiles a plane. The
third is a square pixel set with enhanced resolution toward the center of the field of interest.
The key point here is that only the first example can be written as a matrix, but all satisfy
the definition of image. We found that these operations had a place in a real-life example
and when applying these operations it is very important that our result is still an image in
the same configuration. It turns out that these operations are important enough that we
give a name to sets that have these operations with some pretty standard properties.
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2.2 Vectors and Vector Spaces

The word vector may be familiar for many students who have taken Vector Calculus and/or
Physics. In these courses, there is a very specific type of vector used, vectors in Rm. That is,
the word vector may bring to mind something that looks like ⟨a, b⟩, ⟨a, b, c⟩, or ⟨a1, a2, . . . , an⟩.
Maybe you’ve even seen things like any of the following

(a, b), (a, b, c), (a1, a2, . . . , an),




a
b
c


 ,




a
b
c


 ,




a1
a2
...
an


 ,




a1
a2
...
an




called vectors. In this section, we first define the type of set we want to consider when talking
about linear algebra concepts. Then, we discuss the elements of these sets called vectors.

Definition 2.2. A set V with a set of scalars and operations + and scalar multiplication
· is called a vector space if the following ten properties hold. Elements of V are called
vectors. Let u,v,w ∈ V be vectors and α, β be scalars (constants).

1. V is closed under addition +: u + v ∈ V (Adding two vectors gives a vector in the
set.)

2. V is closed under scalar multiplication α · u ∈ V . (Multiplying a vector by a scalar
gives a vector in the set.)

Question: Does the set of odd real numbers satisfy the properties above? How about
the set of even real numbers?

3. Addition is commutative: u+ v = v + u.

4. Addition is associative: (u+ v) +w = u+ (v +w).

5. Scalar multiplication is associative: α · (β · v) = (α · β)v.

6. Scalar multiplication distributes over vector addition: α · (u+ v) = α · u+ α · v.

7. Vector multiplication distributes over scalar addition: (α + β) · v = α · v + β · v.

8. V contains the 0 vector, where 0+ v = v + 0 = v.
Note: 0 is the additive identity.

9. V has additive inverses −v: v +−v = 0.

10. The scalar set has an identity element 1 for scalar multiplication: 1 · v = v for all
v ∈ V .
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Careful: It is important to note that the identity element for scalar multiplication need not
be the number 1 and the zero vector need not be (and in general is not) the number 0 or a
vector of 0’s.

Notice also that elements of a vector space are called vectors. These need not look like the
vectors presented above.
We now present some examples of vector space and the corresponding vectors arguments.

2.2.1 Common Vector Space Example 1: Rn:

Rn: the set of points or vectors in n-dimensional space is a vector space with scalars taken
from the set of real numbers. Here, we recognize that addition of two vectors in Rn is
component-wise. Here the vectors are just like the vectors we knew before Linear Algebra.

Examples:

(
1
0

)
,

(
1
2

)
,

(
π√
2

)
, and many more.

Example 2.1. R, the set of real numbers is a vector space with scalars taken from the set
of real numbers. We define addition and multiplication as usual.

Example 2.2. We will show that R2 is a vector space and recognize how the same proofs

generalize. Let

(
u1

u2

)
,

(
v1
v2

)
,

(
w1

w2

)
∈ R2 be vectors and α, β be scalars.

• V is closed under addition +:

(
u1

u2

)
+

(
v1
v2

)
=

(
u1 + v1
u2 + v2

)
∈ R2.

• V is closed under scalar multiplication ·: α ·
(

v1
v2

)
=

(
αv1
αv2

)
∈ R2.

• Addition is commutative:(
u1

u2

)
+

(
v1
v2

)
=

(
u1 + v1
u2 + v2

)
=

(
v1 + u1

v2 + u2

)
=

(
v1
v2

)
+

(
u1

u2

)
.

• Addition is associative:((
u1

u2

)
+

(
v1
v2

))
+

(
w1

w2

)
=

(
u1 + v1
u2 + v2

)
+

(
w1

w2

)
=

(
(u1 + v1) + w1

(u2 + v2) + w2

)
=

(
u1 + (v1 + w1)
u2 + (v2 + w2)

)
=

(
u1

u2

)
+

(
v1 + w1

v2 + w2

)
=

(
u1

u2

)
+

((
v1
v2

)
+

(
w1

w2

))
.

• Scalar multiplication is associative:

α ·
(
β ·

(
v1
v2

))
= α

(
βv1
βv2

)
=

(
α(βv1)
α(βv2)

)
=

(
(αβ)v1
(αβ)v2

)
= (αβ) ·

(
v1
v2

)
.
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• Scalar multiplication distributes over vector addition:

α ·
((

u1

u2

)
+

(
v1
v2

))
= α

(
u1 + v1
u2 + v2

)
=

(
α(u1 + v1)
α(u2 + v2)

)
=

(
αu1 + αv1
αu2 + αv2

)
=

(
αu1

αu2

)
+

(
αv1
αv2

)
= α ·

(
u1

u2

)
+ α ·

(
v1
v2

)
.

• Scalar multiplication distributes over scalar addition: (α+β)·
(

v1
v2

)
=

(
(α + β)v1
(α + β)v2

)
=

(
αv1 + βv1
αv2 + βv2

)
=

(
αv1
αv2

)
+

(
βv1
βv2

)
= α ·

(
v1
v2

)
+ β ·

(
v1
v2

)
.

• V contains the 0 vector, where(
0
0

)
+

(
v1
v2

)
=

(
0 + v1
0 + v2

)
=

(
v1 + 0
v2 + 0

)
=

(
v1
v2

)
+

(
0
0

)
=

(
v1
v2

)
.

• V has additive inverses −v:

(
v1
v2

)
+

(
−v1
−v2

)
=

(
v1 + (−v1)
v2 + (−v2)

)
=

(
0
0

)
.

• The scalar set has an identity element 1 for scalar multiplication:

1 ·
(

v1
v2

)
=

(
1(v1)
1(v2)

)
=

(
v1
v2

)
.

Key: If I want to show a set is not a vector space, I just need to show that of
the 10 properties fails.

Example 2.3. Which property of vector spaces is not true for the following subset of R2?

V = {
[
−2
−2

]
,

[
−1
−1

]
,

[
0
0

]
,

[
1
1

]
,

[
2
2

]
}

(a) Closure under vector addition
(b) Existence of an additive identity
(c) Existence of an additive inverse for each vector
(d) None of the above

Question: What would I have to add to the set to make it a vector space?
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2.2.2 Common Vector Space Example 2: Matrices Mm×n:

Example 2.4. M2×3 =

{(
a b c
d e f

)
| a, b, c, d, e, f ∈ R

}
is a vector space when addition

and scalar multiplication are defined as usual with Matrix operations and scalars are taken
from R.

Closure under +:

(
a1 b1 c1
d1 e1 f1

)
+

(
a2 b2 c2
d2 e2 f2

)
=

Closure under ·: α ·
(

a b c
d e f

)
=

Because matrix properties have the same structure as vectors in Rn, all Vector Properties
for Vector Spaces hold.

Additive Identity:

Additive Inverse for arbitrary vector

(
a b c
d e f

)
:

Scalar Identity:

2.2.3 Common Vector Space Example 3: Polynomial Spaces Pn:

Example 2.5. Pn = {a0+a1x+a2x
2+a3x

3+...+anx
n| a0, a1, a2, ..., an ∈ R} is a vector space

with scalars taken from R and addition and scalar multiplication defined in the standard way
for polynomials.

For example, P2 = {ax2 + bx+ c| a, b, c ∈ R}
Example vectors in P2:

Is x3 ∈ P2?
Is x3 ∈ P3?

Why are Polynomial Spaces vector spaces? (We will show P2 is a vector space)
Closure under +:

Closure under ·:

Vector Properties: Yes because we can add polynomials component-wise, we can represent

ax2 + bx+ c as a vector



a
b
c


 so all vector properties hold.

Additive Identity:
Additive Inverse for arbitrary vector ax2 + bx+ c:
Scalar Identity:
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2.2.4 Common Vector Space Example 4: Function Spaces F :

F = {f : R → R}: the set of all functions whose domain is R and whose range is a subset
of R. F is a vector space with scalars taken from R. We can define addition and scalar
multiplication in the standard way. Note: Here, the vectors are functions.

Examples vectors in this Vector Space:

How we define our two operations: Addition: f + g = (f + g)(x) = f(x) + g(x)
Scalar Multiplication: αf = (αf)(x) = α · f(x)
Check it is a Vector Space: Let f, g, h ∈ F and α, β ∈ R then

• f : R → R and g : R → R. Based on the definition of addition, f + g : R → R. So F
is closed over addition.

• Similarly, F is closed under scalar multiplication.

• Addition is commutative: (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x). So,
f + g = g + f .

• Addition is associative: ((f + g) + h)(x) = (f + g)(x) + h(x) = (f(x) + g(x)) + h(x) =
f(x)+(g(x)+h(x)) = f(x)+(g+h)(x) = (f+(g+h))(x). So (f+g)+h = f+(g+h).

• Scalar multiplication is associative: (α · (β · f))(x) = (α · (βf(x))) = (αβ)f(x) =
((αβ) · f)(x). So α · (β · f) = (αβ) · f .

• Scalar multiplication distributes over vector addition: (α ·(f+g))(x) = α ·(f+g)(x) =
α · (f(x) + g(x)) = α · f(x) + α · g(x) = (α · f + α · g)(x). So α(f + g) = αf + αg.

• Scalar multiplication distributes over scalar addition: ((α+β) ·f)(x) = (α+β) ·f(x) =
α · f(x) + β · f(x) = (α · f + β · f)(x). So, (α + β) · f = α · f + β · f .

• F contains the constant function defined by z(x) = 0 for every x ∈ R. And, (z+f)(x) =
z(x) + f(x) = 0 + f(x) = f(x) = f(x) + 0 = f(x) + z(x) = (f + z)(x). That is,
z + f = f + z = f . So, the 0 vector is in F .

• F has additive inverses −f defined to as (−f)(x) = −f(x) and (f + (−f))(x) =
f(x) + (−f(x)) = 0 = z(x), where z is defined in part 2.2.4. So, f + (−f) = z.

• The real number 1 satisfies: (1 · f)(x) = 1 · f(x) = f(x). So, 1 · f = f .
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2.2.5 Common Vector Space Example 5: Space of Greyscale Images:

Notice that the set of images of a with a specified geometric arrangement is a vector space
with scalars taken from R. That is, if we consider the set

V = {Ia| I is of the form below and a1, a2, . . . a14 ∈ R} .

Ia =
a2

a1

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

We know this is a vector space since, by definition of addition and scalar multiplication on
images, we see that both closure properties hold. Notice that there is a corresponding real
number to each pixel (or voxel). Because addition and scalar multiplication are taken pixel-
wise (or voxel-wise), we can see that these 10 properties hold within each pixel (or voxel).
So, we know all 10 properties hold (just like they did in the last example2.2).

Note: It turns out that given any geometric configuration our definitions of image and
operations on images guarantee that the space of images with the chosen configuration is a
vector space. The vectors are then images.

Example 2.6. Is the following space V = {



0
0
0


} a Vector Space?

(a) Yes, and I am very confident
(b) Yes, but I am not very confident
(c) No, but I am not very confident
(d) No, and I am very confident
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2.2.6 Common Vector Space Example 6: Homogeneous System of Equations:

Example 2.7. Determine whether or not V is a vector space. Verify your answer.

V =








x
y
z


 ∈ R3

∣∣∣∣∣∣
x+ y + z = 1, 2x+ 2y + 2z = 2, and − x− y − z = −1



 .

Notice when we change the system to a homogeneous system we get a vector space.

Example 2.8. Determine whether or not V is a vector space.

V =








x
y
z


 ∈ R3

∣∣∣∣∣∣
x+ y + z = 0, 2x+ 2y + 2z = 0, and − x− y − z = 0



 .
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2.2.7 Vector Space Example 7: Heat States in Diffusions and other models:

A manufacturing company uses a process called diffusion welding to adjoin several smaller
rods into a single longer rod. The diffusion welding process leaves the final rod heated to
various temperatures along the rod with the ends of the rod having the same temperature.
Every acm along the rod, a machine records the temperature difference from the temperature
at the ends to get an array of temperatures called a heat state.

1. Plot the heat state given below (let the horizontal axis represent distance from the left end

of the rod and the vertical axis represent the temperature difference from the ends).

u = (0, 1, 13, 14, 12, 5,−2,−11,−3, 1, 10, 11, 9, 7, 0)

2. How long is the rod represented by u, the above heat state, if a = 1cm?

3. Give another example of a heat state for the same rod, sampled in the same locations.

4. Notice that the set of all heat states, for this rod, is a vector space.

5. What do the vectors in this vector space look like? That is, what is the key property
(or what are the key properties) that make these vectors stand out?

2.2.8 Vector Space Example 8: Galois Field 2: GF (2)n:

See HW 4.
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2.3 Span and Subspace Motivation

Span: It is now natural to ask the question: What images can be created as linear com-
binations of a given set of images? We say that image z is in the span of a set of images
I = {x, y, ...} if z can be written as a linear combination of images in I. We write z ∈Span(I).
We also say that Span(I) is the set of all linear combinations of the images in I.

Example 2.9. Image 3 from Lab 1 was in the span of Images A, B and C since
Image 3= a*Image A+b*Image B+c*Image C. But Image 4 is not in Span(Image A, Image
B, Image C) since we could not write it as a linear combination of Images A, B and C.

Image A Image B Image C

Image 3 Image 4

Is Image 3∈ span {Image A, Image B, Image C}?

Subspace: Because Span(I) is determined by the same operations as closure of vector spaces,
we might ask if Span(I) is a vector space of images. Indeed it is, and it is also a subset of the
set of all images (of the same geometry). We say that W is a subspace of V if it is nonempty
and is closed under image addition and scalar multiplication.

Notation: x ∈ V means x is an element of V.

Example: If V = R, then 3 ∈ V .

U ⊆ V or U ⊂ V means U is a subset of V.

Example: If U = { even numbers }, then U ⊆ R.
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2.4 Span

In this class, we will use the word Span as both a and . Let us begin
with the definition of the noun span.

Definition 2.3. (n.) Let V be a vector space and let X = {v1, v2, . . . , vn} ⊂ V . Then the
span of the set X is the set of all linear combinations of the elements of X. That is,

span X = span {v1, v2, . . . , vn} = {α1v1 + α2v2 + . . .+ αnvn| α1, α2, . . . , αn are scalars}.

Why do we care about “Span”?

• Allows us to encode a Vector Space compactly into its building blocks (uses bases
-coming soon!)

• Helps us to represent the set of possible outputs of a Vector Space.

• Allows us to determine if subsets of vectors produce the same set of outputs.

• Helps us determine if a vector is in a Vector Space.

Method: How to show a vector u is in the span {v1, v2, ...vn}:
Try to find scalars/coefficients αi such that u = α1v1 + α2v2 + α3v3 + · · ·+ αnvn.

Example 2.10. Let v1 = 3x+4, v2 = 2x+1, v3 = x2+2, and v4 = x2. Is v1 ∈ span {v2, v3, v4}?
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Example 2.11. Find the span of the two polynomials x and 1 in P1, denoted span {x, 1}.
Recall P1 = {ax+ b| a, b ∈ R}. Also determine span {x, 2}. Is span {x, 2} = span {x, 1}?

Note: This example is interesting because it shows two different ways to write the same set
as a span.
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2.4.1 ICE 2a: Span: Part 1

Eva and Archer are going on a trip for the first time. Dr. Harsy wants to help them on their
journey so she gives them two gifts. Specifically, she gives them two forms of transportation:
a hover board and a magic carpet. Dr. Harsy informs them that both the hover board and
the magic carpet have restrictions in how they operate:

We denote the restriction on the hover board’s movement by the vector

[
3
1

]
.

By this we mean that if the hover board traveled ”forward” for one hour, it would
move along a ”diagonal” path that would result in a displacement of 3 miles East
and 1 mile North of its starting location.

We denote the restriction on the magic carpet’s movement by the vector

[
1
2

]
.

By this we mean that if the magic carpet traveled ”forward” for one hour, it
would move along a ”diagonal” path that would result in a displacement of 1
mile East and 2 miles North of its starting location.

Scenario One: The Maiden Voyage
Eva and Archer’s first adventure is to go visit their cousin Mako who lives in a cabin that is
107 miles East and 64 miles North of their home.

Task 1a:
Investigate whether or not Eva and Archer can use the hover board and the magic carpet to
get to Mako’s cabin. If so, how? If it is not possible to get to the cabin with these modes of
transportation, why is that the case?
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Task 1b: What is another “linear algebra” way to ask the question in Task 1?

Task 2a: Suppose the magic carpet is acting up so Eva and Archer can only use their
hoverboard. Can they get to Mako’s cabin now? Why or why not?

Task 2b: Since they can’t use their magic carpet, Eva and Archer need to borrow a magic
carpet from their friend’s Habañero (Dr. Haven’s cat) to get to Mako’s cabin. She has many

different carpets which movement restrictions given by c1 =

[
3
1

]
, c2 =

[
6
2

]
, c3 =

[
1
3

]
, and

c4 =

[
−3
−1

]
. Archer doesn’t want to do much work calculating this answer. Eva says that

Archer could probably answer this in his head. Which carpet should he borrow? Check your
answer if you have time.
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2.5 Spanning Sets

Definition 2.4. (v.) We say that the set of vectors {v1, v2, . . . , vn} spans a set X if
X = span {v1, v2, . . . , vn}. In this case, we call the set {v1, v2, . . . , vn} a spanning set of
X.

Example 2.12. True or False: Spanning Sets are unique.

(a) True, and I am very confident
(b) True, but I am not very confident
(c) False, but I am not very confident
(d) False, and I am very confident

Method: How to show a subset of vectors {v1, v2, ...vn} spans (is a spanning
set for) a Vector Space W:

This means we want to show we can produce any vector w in W using a linear combination
of vectors in the set {v1, v2, ...vn} ⊆ W .
The problem is that W often has infinitely many vectors in it. How can we check them all?

Solution: Pick an arbitrary vector in W and see if we can write the arbitrary vector as a
linear combination of v1, v2, ...vn Try to find scalars/coefficients (αi’s) such that
u = α1v1 + α2v2 + α3v3 + · · ·+ αnvn.

What is an arbitrary vector representative for R3?

What is an arbitrary vector representative for P3?

Note spanning sets need to be a subset of X. For example D = {x, 1, x2} cannot be a
spanning set for P1 = {ax+ b|a, b ∈ R}. Why?

Example 2.13. Which of the following sets are spanning sets for P1 = {ax+ b|a, b ∈ R}:

A = {200, 1} B = {x}
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C = {x, x+ 1}

E = {x, 1, 3x+ 4}

D = {x+ 1, 2x+ 2}
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Example 2.14. Show that R2 is spanned by both

{(
1
0

)
,

(
0
1

)}
and

{(
1
1

)
,

(
1
2

)
,

(
−1
3

)}
.
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Notice that in each of these examples, we found that the span of a set turned out to be a
vector space. It turns out that this is always true.
Because of this, we now have a new way to determine if a set is a vectors space -check if it
can be written as a span.

Method: How to write a set of vectors {v1, v2, ...vm} as a span (if you can):

Ultimate Goal: Be able to write the set S = {v1, v2, ...vm} in the form
{α1v1 + α2v2 + . . .+ αnvn| α1, α2, . . . , αn ∈ R} = span {v1, v2, ..., vn}
*Note there are NO restrictions on the constants!

For example, P1 = {ax+ b|a, b ∈ R} = span {1, x}.

But S = {v1 + av2|a ∈ R} has the restriction that the constant in front of v1 must be 1.
Thus, S = {av1 + bv2|a = 1, b ∈ R}. So is S a vector space?

Example 2.15. Which of the following sets are vector spaces?

T = {5 + av1|a ∈ R}

V = {a(v1 + v2)|a ∈ R}

Example 2.16. Show that {a0 + a1x|a0 + a1 = 0} is a vector space by writing it as a span
of vectors.
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Here, we summarize the terminology:

We say {v1, v2, . . . , vn} spans a set V if V is the span of {v1, v2, . . . , vn}.

We say {v1, v2, . . . , vn} is a spanning set for V if V is the span of {v1, v2, . . . , vn}.

We say V is spanned by {v1, v2, . . . , vn} if V is the span of {v1, v2, . . . , vn}.

Finally, all of these mean that if v ∈ V then there are scalars α1, α2, . . . , αn so that
v = α1v1 + α2v2 + . . . αnvn.

Example 2.17. How do you describe the span of the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1)?
(a) A point
(b) A line segment
(c) A line
(d) R2

(e) R3

Example 2.18. How do you describe the set of all linear combinations of the vectors (1, 0, 0),
(0, 1, 0)?
(a) A point
(b) A line segment
(c) A line
(d) R2

(e) R3

Example 2.19. How do you describe the set of all linear combinations of the vector (1, 0, 0)?
(a) A point
(b) A line segment
(c) A line
(d) R2

(e) R3
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2.5.1 ICE 2b: Span: Part 2

Scenario two: Getting Back Home
Suppose Eva and Archer are now in a three-dimensional world for the carpet ride problem,

and they have three models of transportation: v1 =



1
1
1


 , v2 =



6
3
8


 , v3 =



4
1
6


.

Task 1:2 Eva and Archer are only allowed to use each mode of transportation once (in the
forward or backward direction) for a fixed amount of time (c1 on v1, c2 on v2, c3 on v3). Find
the amounts of time on each mode of transportation (c1, c2, and c3, respectively) needed
to go on a journey that starts and ends at home OR explain why it is not possible to do so.

Hint 1: We don’t know where Eva and Archer’s house is (and Dr. Harsy is not sure she
wants to share this with her class), so what could we use to represent the location of their
house?

Hint 2: Set up an equation you want to solve with these vectors. And see if you can find
values for c1, c2, and c3.

22 sided!
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Bonus Task 1: What equation do we really solve in Task 1?

Task 2: Is there more than one way to make a journey that meets the requirements described
above? (In other words, are there different combinations of times you can spend on the modes
of transportation so that you can get back home?) If so, how? (use the same vectors from
the first page.3)

3v1 =



1
1
1


 , v2 =



6
3
8


 , v3 =



4
1
6


.
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2.6 Subspaces

Many times, we work in subsets of vector spaces.
Definition: Let V be a vector space. If W ⊆ V is a subspace of V if it satisfies the
following three properties.

1. ∈ W
(We don’t allow W to be empty and so we require that it contains the 0 vector.)

2. Let u ∈ W and α be a scalar. Then ∈ W .
The Closure Property under scalar multiplication.

3. Let u,v ∈ W Then ∈ W .
The Closure Property under vector addition.

Note: You can combine 2 & 3 by checking whether the space is closed under linear combi-
nations:
Let u, v ∈ W and α, β be scalars. Then αu+ βv ∈ W .

1. 0 ∈ W
(We don’t allow W to be empty and so we require that it contains the 0 vector.)

2. If u, v ∈ W and α, β are scalars, then + ∈ W

Heuristic Verification: Why Only These 2 Properties Are Necessary To Check:
Notice that if W is a subspace of V , then W is a vector space as well. The Vector Properties
are inherited from V since V is like a parent set to W . The scalar 1 still exists in the scalar
set also. The only issue that may happen comes with the Closure Properties. This means
that we need only show closure under addition and scalar multiplication and that 0 ∈ W .

Theorem: Let V be a vector space and let v1, v2, . . . , vn ∈ V . Then span {v1, v2, . . . , vn} is
a subspace of V .

Method: How to show a subset of vectors, W, of a Vector Space V is a
subspace: There are 2 methods:

First Method:
Show that both
1) 0 ∈ W and
2) Pick arbitrary vector u ∈ W & scalar α
and show that αu ∈ W .
3) Pick arbitrary vectors v,u ∈ W
and show that u+ v ∈ W .

Second Method:
Write the set as a span.
That is, show that
W = {a1v1 + a2v2 + ...+ anvn|ai ∈ R}
⇒ W = span {v1, v2, ..., vn}

*Note that in both methods, the subset must follow the normal rules of the bigger space.
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Example 2.20. Let W = {(x, y) ∈ R2| − 2x+ 7y = 9, x− 4y = −2}.
Is W a subspace of R2?

Note: A line in R2 that does NOT go through the origin is not a subspace of R2. Similarly
a hyper-plane in Rn that doesn’t contain the zero vector is not a subspace.

Example 2.21. Is R2 a subspace of R3?

Example 2.22. Is W = {a
[
2
1

]
|a ∈ R} a subspace of R2?
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Example 2.23. Let V = {(x, y, z) ∈ R3| x + y + z = 0, 3x + 3y + 3z = 0}. Write V as a
span to show that V is a subspace of R3.
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Reading Example: Please read on your own time.

Example 2.24. Consider the set of images V = {I| I is of the form below and a, b, c ∈ R}.

+2b

a

2a

a
+b

I =

a
−c

b

−b
a

a

c
−a

b

c
+b

b
+2c

2a
+2b
+2c

c

a

We can show that V is a subspace of images with the same geometric configuration. We showed
above that the set of these images is a vector space, so we need only show the two subspace properties.
First, notice that the 0 image is the image with a = b = c = 0 and this image is in V . Now, we need
to show that linear combinations are still in the set V . Let α, β ∈ R, be scalars and let I1, I2 ∈ V ,
then there are real numbers a1, b1, c1, a2, b2, and c2 so that

a1

I1 =

a1

2a1

b1

c1

b1

a1

+b1

a1

−b1
a1

−a1

+b1

+2c1

b1

2a1
+2b1
+2c1

+2b1

−c1

a1

c1

c1

+2c2

a2

2a2

I2 = a2
+b2

a2
−c2

b2

−b2
a2

a2
+2b2

c2

b2

a2

c2
−a2

c2
+b2

b2
+2c2

2a2
+2b2

Notice that αI1 + βI2 is also in V since... (see image on next page)
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αc1 + βc2

αI1 + βI2 =

2αa1 + 2βa2
+β(c2 − a2)

α(c1 − a1)

αa1 + βa2αa1 + βa2

+β(a2 − b2)

α(a1 − b1)
+β(c2 + b2)

α(c1 + b1)

αb1 + βb2+β(a2 + b2)

α(a1 + b1)

+β(a2 − c2)

α(a1 − c1)

αb1 + βb2 +β(b2 + 2c2)

α(b1 + 2c1)

+2b2 + 2c2)
+β(2a2

+2b1 + 2c1)
α(2a1

+β(a2 + 2b2)

α(a1 + 2b1)

Notice that performing the operations inside each pixel shows that we can write αI1 + βI2 in the

same form as I above. That is, αI1 + βI2 ∈ V . Thus V is a subspace of images that are laid out

in the geometric form above. Notice, this means that V is in itself a vector space.
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2.6.1 ICE 2c: Span: Part 3 -Subspaces

Which of these subsets are subspaces of M2×2? For each one that is a subspace, write the
set as a span. For each that is not, show the condition that fails.4!

A =

{(
a 0
0 b

)∣∣∣∣ a, b ∈ R
}

B =

{(
a 0
c b

)∣∣∣∣ a− 2b = 0, c ∈ R
}

4Two Sided
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C =

{(
a 0
c 0

)∣∣∣∣ a+ c = 1

}

D =

{(
a 1
0 b

)∣∣∣∣ a, b ∈ R
}
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2.7 Linear Independence

In the Radiography and Tomography Lab #1, you were asked to write one image using
arithmetic operations on three others. You found that this was possible sometimes and not
others. It becomes a useful tool to know whether or not this is possible.

Definition 2.5. Let V be a vector space. We say that the set {v1, v2, . . . , vn} ⊂ V , is
linearly independent if no element is in the span of the others. This means, we can’t
write this vector as a linear combination of the other vectors in the set.

Check for Linear Independence: When α1v1 + α2v2 + . . .+ αnvn = 0 is true only when
α1 = α2 = . . . = αn = 0., then the vectors v1, v2, . . . , vn are linearly independent.
This check is called the linear dependence relation.

Definition 2.6. If {v1, v2, . . . , vn} is not linearly independent, then we say that it is linearly
dependent. Note this means that we can write one element as a linear combination of the
others.

Here is the process to check whether or not {v1, v2, ...vn} is linear independent:
Step 1: Set an arbitrary linear combination of vi’s equal to 0:
α1v1 + α2v2 + ...+ αnvn = 0
Step 2: See if you can find values for the αi’s that are not all 0. If you can, the set is
dependent. If α1 = α2 = ... = αn = 0 is the only possible values for the α’s, then the set is
linear independent.

Careful: Of course, one solution for the linear dependence relation will always be α1 =
α2 = . . . = αn = 0, but this tells us nothing about the linear dependence of the set. That is,
just because α1 = α2 = . . . = αn = 0 works, it doesn’t mean the set is linear independent.
You must show that it is the solution!

Demonstration: If the set {v1, v2} is linearly dependent, then we can find α1 and α2,
BOTH not zero, such that α1v1 + α2v2 = 0.

Suppose α1 is not zero.
Set α1v1 + α2v2 = 0.

Since α1 ̸= 0, we can solve for v1:
v1 = −α2

α1
v2.

This shows that, v1 is a scalar multiple of v2
which means v1 can be built from v2

aka v1 is dependent of v2.
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Example 2.25. The set {0, v1, v2, . . . , vn} is always linearly dependent.

Thus, it if we are considering the linear dependence a two element set, we need only check
whether one can be written as a scalar multiple of the other.

Example 2.26. Determine whether {x2+x, x2, 1} ⊆ P2 is linearly dependent or independent.
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Notice that whenever we are determining whether a set is linearly independent or dependent, we

always start with the linear dependence relation and determine whether or not there is only one

set of scalars that (when they are all zero) to make the linear dependence relation true.

Example 2.27. Determine the linear dependence of the set

{(
1 3
1 1

)
,

(
1 1
1 −1

)
,

(
1 2
1 0

)}
.

(To See Row Reduction)5

5




1 1 1 0
3 1 2 0
1 1 1 0
1 −1 0 0




R2=−3r1+r2−→
R3=−r1+r3,R4=−r1+r4




1 1 1 0
0 −2 −1 0
0 0 0 0
0 −2 −1 0




R2=
1

−2 r2−→
R4=−r2+r4




1 1 1 0
0 1 1

2 0
0 0 0 0
0 0 0 0




R1=−r2+r1−→




1 0 1
2 0

0 1 1
2 0

0 0 0 0
0 0 0 0
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Example 2.28. Let v1 =




−1
0
1


 , v2 =




1
0
0


 , and v3 =




0
0
1


 ∈ R3. Can we write

Span({v1, v2, v3}) as a span of 2 vectors? 1 vector?
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2.8 Basis

Idea: Describe a vector space in terms a much smaller subset. This set can be considered
building blocks which we can use to build any vector from the vector space.
Recall, a vector space can be written as a span of vectors. Sometimes when we compute
the span of a set of vectors, we see that it can be written as a span of a smaller set of
vectors. This means that the vector space can be described with the smaller set of vectors.
This happens when the larger set of vectors is linearly dependent.

Main Goal: Find a spanning set that is big enough to describe all of the elements of our
vector space, but not so big that there’s repetition.

Definition 2.7. Given a vector space V , we call B = {v1, v2, . . . , vn} the basis of V if and
only if B satisfies the following conditions:

1. span (B) = and

2. B is linearly independent.

Think of it this way, we are like Goldie Locks, we want our set to be
1) Big Enough so
2) Not to Big that we have

Example 2.29. The standard basis for R3 is B =








1
0
0


 ,




0
1
0


 ,




0
0
1





 .
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Notation: Because the standard basis is used often, we introduce notation for each of the
vectors. We let e1, e2, and e3 denote the three vectors in S, where

e1 =




1
0
0


 , e2 =




0
1
0


 , and e3 =




0
0
1


.

In general, for Rn, the standard basis is {e1, e2, . . . , en}, where ei is the n × 1 vector array
with zeros in every entry except the ith entry which contains a one.

Example 2.30. Show that another basis for R3 is B =








2
0
1


 ,




1
1
0


 ,




0
0
1





 .
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Example 2.31. The standard basis for P2 is S = {x2, x, 1}. Show S is a basis for P2.
Recall, P2 = {ax2 + bx+ c · 1|a, b, c ∈ R} = span {x2, x, 1}.

Example 2.32. B = {1, x+ x2, x2} is also a basis for P2. In Exercise2.26, we showed that
B is linearly independent. So, we need only show that span B = P2. again, we need only
show that P2 ⊆ span B since it is clear that span B ⊆ P2.
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Notice in the last four examples, we see two examples where the bases of a vector space had
the same number of elements. That is, both bases of R3 had the same number of elements
and both bases for P2 had the same number of elements. One should wonder if this is always
true. The answer is given in the next theorem.

Theorem 2.1. Let V be a vector space with bases B1 = {v1, v2, . . . , vn} and B2 = {u1, u2, . . . , um}.
Then the number of elements, n in B1 is the same as the number of elements, m in B2.

That is, n = .

Proof. Suppose both B1 and B2 are bases for V . We show that this is true by assuming it
is not true and showing that this is an impossible scenario. That is, we will assume that
m ̸= n and find a reason that this cannot be true. Suppose m > n (a very similar argument
can be made if we assumed n > m). Since both B2is a subset of V , we know that there exist
αi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n so that

u1 =α1,1v1 + α1,2v2 + . . .+ α1,nvn

u2 =α2,1v1 + α2,2v2 + . . .+ α2,nvn
...

um =αm,1v1 + αm,2v2 + . . .+ αm,nvn.

We want to show that B cannot be linearly independent (which would be impossible if it is
a basis). Let

β1u1 + β2u2 + . . .+ βmum = 0.

We will then find β1, β2, . . . , βm. Notice that if we replace u1, u2, . . . , un with the linear
combinations above, we can rearrange to get

(β1α1,1 + β2α2, 1 + . . .+ βmαm,1)v1

+(β1α1,2 + β2α2, 2 + . . .+ βmαm,2)v2
...

+(β1α1,n + β2α2, n+ . . .+ βmαm,n)vn = 0.

Since B1 is a basis, we get that the coefficients of v1, v2, . . . , vn are all zero. That is

β1α1,1 + β2α2, 1 + . . .+ βmαm,1) = 0 (1)

β1α1,2 + β2α2, 2 + . . .+ βmαm,2 = 0 (2)

... (3)

β1α1,n + β2α2, n+ . . .+ βmαm,n = 0. (4)

We know that this system has a solution because it is homogeneous. But, because there are
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more scalars β1, β2, . . . , βm (that we are solving for) than there are equations, this system
must have infinitely many solutions. This means that B2 cannot be linearly independent and
so it cannot be a basis. Thus, the only way both B1 and B2 can be bases of the same vector
space is if they have the same number of elements.

Example 2.33. Is {



1
0
1


 ,



0
5
1


 ,



1
2
3


 ,



1
5
2


} and basis for R3?

a) Yes, and I am very confident!
b) Yes, but I am not very confident.
c) No, and I am very confident!
d) No, but I am not very confident.

Because the number of elements in a basis is unique to the vector space, we can give it a
name.

Definition 2.8. Given a vector space V whose basis B has n elements, we say that the
dimension of V is n, the number of elements in B (dimV = n.)
Sometimes we say that V is n-dimensional.

Example 2.34. We can see that the last 4 examples show that both R3 and P2 are

a) 1 dimensional
b) 2 dimensional
c) 3 dimensional
d) 4 dimensional
e) 5 dimensional

Note: What we see is that, in order to find the dimension of a vector space, we need to find
a basis and count the elements in the basis.

This can also help us immediately check whether or not a set of vectors is a basis.

Since P4 = {ax4 + bx3 + cx2 + dx+ e|a, b, c, d, e ∈ R} = span {x4, x3, x2, x, 1}, it’s dimension
is so we know any set that doesn’t have exactly vectors will not be a
basis.

Bases are not unique, but often we want to the easiest basis (set of building blocks.)

What would be the easiest (standard) basis for M2×2 = {
[
a b
c d

]
|a, b, c, d ∈ R}?
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Example 2.35. Let V =








x
y
z



∣∣∣∣∣∣
x+ y + z = 0, 2x+ y − 4z = 0, 3x+ 2y − 3z = 0



.

Find the dimension of V. First, we need to rewrite V as a span.

x + y + z = 0
2x + y − 4z = 0
3x + 2y − 3z = 0

use matrix−→




1 1 1 0
2 1 −4 0
3 2 −3 0


 R2=−2r1+r2−→

R3=−3r1+r3




1 1 1 0
0 −1 −6 0
0 −1 −6 0




R1=r2+r1−→
R3=−r2+r3,R2=−r2




1 0 −5 0
0 1 6 0
0 0 0 0


 −→
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2.8.1 ICE 3: Basis

2 sides!

1. True or False: Each vector space has a unique basis.
(a) True, and I am super confident!
(b) True, but I am not very confident.
(c) False, and I am super confident!
(d) False, but I am not very confident.

2. Which of the following describes a basis for a subspace V ?
(a) A basis is a linearly independent spanning set for V .
(b) A basis is a minimal spanning set for V .
(c) A basis is a largest possible set of linearly independent vectors in V .
(d) All of the above
(e) Some of the above

3. Which of the following sets of vectors forms a basis for R3?

i.



−2
1
3


,




3
5
−1


 ii.



−2
0
4


,




0
1
−1


 ,



1
2
0




iii.



−2
0
0


,



1
2
0


 ,




3
0
−2


,




6
2
−2


 iv.



4
6
2


,



3
2
1


 ,



8
12
4


,



6
4
2




(a) i, ii, iii, and iv
(b) ii, iii, and iv only
(c) ii and iii only
(d) iii and iv only
(e) ii only
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4. Which of the following sets of vectors spans R3?

i.



−2
1
3


,




3
5
−1


 ii.



−2
0
4


,




0
1
−1


 ,



1
2
0




iii.



−2
0
0


,



1
2
0


 ,




3
0
−2


,




6
2
−2


 iv.



4
6
2


,



3
2
1


 ,



8
12
4


,



6
4
2




(a) i, ii, iii, and iv
(b) ii, iii, and iv only
(c) ii and iii only
(d) iii and iv only
(e) ii only

5. Which of the following describes the subspace of R3 spanned by the vectors from :

{



4
6
2


,



3
2
1


 ,



8
12
4


,



6
4
2


}? (note this is set iv from the previous problem.)

(a) A line
(b) A plane
(c) R2

(d) All of R3

(e) Both (b) and (c)
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3 Least Squares

Sometimes when we are problem solving, there is no solution to a system of equations. When
this happens, we need to find an approximation for this system. There are a variety of tech-
niques to do this, but one of the most common is using the method of Least Squares.

First we need to introduce some definitions.

3.1 Norm, Distance, Transpose, and Inner Products

Definition 3.1. The transpose of A, AT is a matrix whose columns are formed from the
corresponding rows of A.

That is, the rows of A become the columns of AT .

Example 3.1. Given a matrix A =

[
a b c
d e f

]
, AT =

So if A is an n×m matrix, AT is a .

Octave Code: In octave AT can be written as A′

Definition 3.2. A is a symmetric matrix if AT = A.

Definition 3.3. The inner product or dot product between two vectors u,v ∈ Rn,
denoted u · v, is the product uT · v

Let u =



u1

u2

u3


 ,v =



v1
v2
v3


, u · v = uTv =

Example 3.2. Determine u · v, v · u, and v · v for u =




1
0
−2


 and v =




3
−1
1
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Definition 3.4. The length or norm of a vector v∈ Rn is denoted as ||v|| and defined as
||v|| = √

v · v

Definition 3.5. Given u,v ∈ Rn, the distance between u and v, denoted dist(u,v) is
the length of the vector u− v = ||u− v||.

Note: There are many different ways to define distances/norms. In this class, the norm we
use is called the standard Euclidean Norm.

Example 3.3. Find the distance between u =




1
0
−2


 and v =




3
−1
1




3.2 Method of Least Squares

So if we want to the best approximation for solving Ax = b, we want to minimize the
distance between Ax and b. That is, our goal is to minimize:

Definition 3.6. Given A ∈ Mn×m and b∈ Rn, a least-squares solution of Ax = b is a
x̂ ∈ Rm such that ||b− Ax̂|| ≤ ||b− Ax|| for all x ∈ Rm.

Theorem 3.1. The set of least-square solutions of Ax = b coincides with the nonempty set
of solutions to the normal equation: ATAx = ATb.

Proof. Omitted (We don’t have the theory yet!).

Example 3.4. Find a least-squares solution for Ax = b where A =




2 1
−2 0
2 3


 and b =




1
−1
0


.
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3.3 Linear Modeling

One of the main problems that scientists, mathematicians, and statisticians face is trying
to analyze and understand relationships from a data set. In calculus classes, we are often
given functions to analyze and use. Unfortunately, often we have to create or build our own
function or formula to describe our data. The good news is that linear algebra and the
method of least squares can help!

Example 3.5. Suppose we collect data on age versus brain mass (in the table below) and
wanted to use this to help us hypothesize what happens with brain mass after 45 years.
a) What would you hypothesize?

b) Suppose we hypothesize that brain mass decreases linearly with age. This means we want
to use the function f(x) = cx + a to model this. Our goal now is to find values for a and c
which best fit our data. Find values for c and a so we can find a best-fit line for our data
and use it to predict the brain size of an 90 year old.

Age
(yrs)

Brain Mass
(lbs)

45 4
55 3.8
65 3.75
75 3.5
85 3.3
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We can generalize this. If we want to find the best fit n-degree polynomial to a data set
{(x1, y1, ), (x2, y2, ), (x3, y3, ), ...(xm, ym, )}, we could set up the following system of equations:

a0 + a1x1 +a2(x1)
2 +a3(x1)

3 + ...+ an(x1)
n = y1

a0 + a1x2 +a2(x2)
2 +a3(x2)

3 + ...+ an(x2)
n = y2

a0 + a1x3 +a2(x3)
2 +a3(x3)

3 + ...+ an(x3)
n = y3

...
...

...
...

...
...

...
...

...
...

...
a0 + a1xm +a2(xm)

2 +a3(xm)
2 + ...+ an(xm)

n = ym




1 x1 (x1)
2 (x1)

3 ... (x1)
n

1 x2 (x2)
2 (x2)

3 ... (x2)
n

...
...

...
...

...
...

1 xm (xm)
2 (xm)

3 ... (xm)
n


 ·




a0
a1
a2
...
an



=




y1
y2
y3
...
ym




Example 3.6. Set up the matrix system we would solve if we wanted to find the best fit
quadratic function for the following dataset.

X Y
0 1
1 3
2 6
3 12
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We can also extend this theory to functions that are not polynomials. In fact, many functions
are often approximated by linear combinations of sine and cosine. Example 3.7 gives us an
example in which our function is a trigonometric polynomial. (Note: these types of functions
show up in something called Fourier Series which is beyond the scope of this course, but you
may see in later math and physics courses!)

Example 3.7. A certain experiment produces the data (0, 7.9), (π
2
, 5.4), (π,−0.9). Find val-

ues for A and B which describe the model that produces a least squares fit of the points by a
function of the form
f(x) = A cosx+B sinx.
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4 Linear Transformations

4.1 Motivation for Linear Transformations

Terminology: A Transformation is just another word for . This function will
transform one space to another space. In Calculus 3, this occurred when we used a change
of variables. For example, we can transform rectangular coordinates to polar through a
transformation. In Figure 1 we see that this change of variables transformation takes round
things and makes them rectangular.6

T

r

θ

x

y

Figure 1:

Another type of transformation is when we project from one space to a lower dimensional
space. For example, we can project a points in R2 to their component along the y axis as in
Figure 2.

T y

x

y

Figure 2:

In Lab #2, we found that when we apply a radiographic transformation to a linear combi-
nation, αu+ βv, we get a linear combination of radiographs, αTu+ βTv out. This property
is useful because we may wonder what is an object made of. If we know part of what is
being radiographed (and what the corresponding radiograph should be), we can subtract
that away to be able to view the radiograph of the part we don’t know.

6Some Images from Heather Moon and Beezer’s A First Course in Linear Algebra
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Example 4.1. Suppose we expect an object to look like what we see on the left in Figure 3
but the truth is actually like we see on the right in Figure 3.

Figure 3:

We then expect that the radiograph that comes from an object, xexp like we see on the left
in Figure 3 to be a certain radiograph, call it bexp. But, we take a radiograph of the actual
object, x, and we get the radiograph b. Now, we know for sure that the expected parts are
in the object. We can then remove bexp from the radiograph so that we can dig deeper into
what else is present. Thus, we want to know about the radiograph, bunexp, of the unexpected
object, call this xunexp, that is present. So we compute this radiograph like this:

Another reason this might be helpful comes in possible changes in an object.

Example 4.2. Suppose you radiograph an object as in Figure 3 and find that the radiograph
is bexp, but weeks later, you radiograph the same object (or so you think) and you get a
radiograph that is 1.3 times the radiograph bexp. This could mean that the object now looks
more like one of the objects we see in Figure 4.

Figure 4:

Again, we can see that the density is proportionally larger, possibly meaning the object grew.
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Being able to perform the type of investigation above with our radiographic transformation
is very useful. It turns out that this property is useful beyond the application of radiography,
so useful that we define transformations with this property.

4.2 Introduction to Linear Transformations

Definition 4.1. Let V and W be vector spaces and let T be a function that maps vectors
in V to vectors in W . We say that T : V → W is a linear transformation if both of the
following are satisfied:
1) For any arbitrary vectors u1, u2 ∈ V , T (u1 + u2) =
2) For any scalar α and vector u ∈ V , T (αu) =

Note: You can combine these two steps into a 1-Step Check by showing that
T (αu1 + βu2) = .

Terminology: We can also call T a linear function or a homomorphism.

Method: To check if T : V → W is a linear transformation, take 2 arbitrary elements in V,
and an arbitrary scalar and check that
1) T (u1 + u2) = T (u1) + T (u2), and
2) T (αu1) = αT (u1)

Note: The radiographic transformation is an example of a linear transformation.

Example 4.3. Consider the map T : R3 → W where T




a
b
c


 =

(
a+ b+ c

)
.

a) Determine T




1
2
3


.

b) Determine whether T is a linear transformation.
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Example 4.4. Is the map f : R → R where f(x) = 2x+ 1 a linear transformation?

(a) Yes, and I am very confident
(b) Yes, but I am not very confident
(c) No, but I am not very confident
(d) No, and I am very confident

Example 4.5. f(x) = mx+ b is a linear transformation only if what is true:

(a) m = 0 and b = 0
(b) m = 0 and b can be anything
(c) b = 0 and m can be anything
(d) m and b can be anything!
(e) I like cats!

Theorem 4.1. Let V and W be vector spaces. If T : V → W is a linear transformation,
then T (0) = .

Proof. Let V and W be vector spaces and let T : V → W be a linear transformation. Notice
that 0 ∈ V and 0 ∈ W . (Note also that these two vectors called 0 need not be the same
vector.) We also know that, for any scalar α, T (0) = T (α0) = αT (0). We can use this
equation to solve for T (0) and we get that either α = 1 or T (0) = 0. Since we know that α
can be any scalar, T (0) = 0 must be true.

Quick Check for Linear Transformations:
We can determine whether or not T (0) = . If not, T cannot be linear.
If yes, you still have to check that T (u1 + u2) = T (u1) + T (u2) and T (αu) = αT (u).

Example 4.6. Determine which of the following is a linear transformation.

a) Define f : R3 → R2 by f(v) = Mv + x, where M =

(
1 2 1
1 2 1

)
and x =

(
1
0

)
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b) Define T : P2 → P1, where by T (ax2 + bx+ c) = 2ax+ b.

Example 4.7. Define T (v) = Av, where A =

[
−1 0
0 1

]
. Then T (v).... [Hint: let v =

[
x
y

]
]

(a) reflects v about the x-axis.
(b) reflects v about the y-axis.
(c) rotates v clockwise π

2
radians about the origin.

(d) rotates v counterclockwise π
2
radians about the origin.

(e) None of the above
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4.2.1 Motivation for Matrix Forms of Linear Transformations:

Functions are relatively easy for us to understand, but it would be nice to be able to encode
them into a matrix form so computers can understand and use them better. Matrices tend
to be a good way to store information in a computer. They are also, at times, easier to work
with (as they were when we solved systems of equations). Coding a linear transformation
based on the formula can at times be very tedious. So, we want to be able to use matrices
as a tool for linear transformations as well. Let’s look at an example that suggests that this
might be a good idea.

Example: Define T : R2 → R3 by Tx = Mx, where M is a 3 × 2 matrix. T is a linear
transformation. We can show this using properties of matrix multiply. Let x, y ∈ R2 and let
α, β be scalars. Then

T (αx+ βy) = M(αx+ βy)

= Mαx+Mβy

= αMx+ βMy

= αTx+ βTy.

This example shows us that matrix multiply defines a linear transformation. So, what if we
can define all linear transformations with a matrix multiply? That would be really great!
Issue: We can’t just multiply a vector, in say P2, by a matrix. What would that mean?

Key: Represent it using a Coordinate Vector
(coming soon after this ICE sheet!)
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4.2.2 ICE 4 -Linear Transformations

1) Suppose “N” on the left is written in regular 12-point font. Find a matrix A that will
transform N into that letter on the right, which is written in ‘italics’ in 16-point font.

A =
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2) After class, Eva, Archer and their kitty friends Gilbert and Mako are wondering how

letters placed in other locations in the plane would be transformed under A =

[
1 1/3
0 4/3

]
. If

an “E” is placed around the “N,” the kitties argued over four different possible results for
the transformed E’s on the next page. Which choice below is correct, and why? If none of
the four options are correct, what would the correct option be, and why?
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5 Coordinate Vectors

In our typical 3D space, we talk about vectors that look like




x
y
z


. And we see that the

coordinates are x, y, and z respectively. What this means is that the vector points from the
origin to a point that is x units horizontally, y units vertically, and z units up from the origin
(as in the Figure below. The truth is that when we say that, we are assuming that we are
working with the standard basis for R3. (This makes sense because, it is the basis that we
usually think about, x-axis perpendicular to the y-axis, forming a horizontal plane and the
z axis perpendicular to this plane.)

 x
y
z



y

x

z

So, using the standard basis E = {




1
0
0


 ,




0
1
0


 ,




0
0
1


}, we can write




x
y
z


 = x




1
0
0


+ y




0
1
0


+ z




0
0
1


 .

Notice that the coordinates are the scalars in this linear combination. That’s what we mean

by coordinates. Notice the coordinates of the vector v =




1
2
3


 in the standard basis are

, , & respectively.
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Now, let us consider a different basis for R3, B =








1
1
1


 ,




1
0
1


 ,




0
0
1





 . Let’s find

the coordinates for v =




1
2
3


 in this new basis. These are found by finding the scalars

α1, α2, and α3 so that




1
2
3


 = α1




1
1
1


 + α2




1
0
1


 + α3




0
0
1


 . Going through the

motions to solve for α1, α2, and α3, we find that α1 = 2, α2 = −1, and α3 = 2.

Thus, we can represent the vector v in coordinates according to the basis B as

[v]B =




2
−1
2


 .

This vector is called the B−coordinate vector of v or the coordinate vector relative to B and
is denoted as [v]B. Notice that we indicate that we are looking for the coordinates in terms
of the basis B by using the notation, [v]B by using the notation, [v]B. This means if we are
given a vector space V and bases B1 = {v1, v2, . . . , vn} and B2 = {u1, u2, . . . , un}, then if

w = α1v1 + α2v2 + . . .+ αnvn, we have [w]B1 =




α1

α2
...
αn


 .

But, if w = β1u1 + β2u2 + . . .+ βnun, we have [w]B2 =




β1

β2
...
βn


 .

In our example from R3, notice [v]B =




2
−1
2




but with respective to the standard basis, [v]E3 =




1
2
3


 .

Important: Notice also that coordinate vectors look like vectors in Rn for some n.
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Let’s do another example from a vector space that isn’t already in vector form:

Suppose we have v = 3 + x − x2 ∈ P2. Given the standard basis for P2,B = {1, x, x2}, we
can think of v = 3 + x − x2 = 3(1) + 1(x) − 1(x2). We define 3, 1,−1 as the B-coordinates
of v. Now we can represent 3 + x− x2 as a vector in R3:

Example 5.1. What is the coordinate vector of 3 + x− x2 relative to the standard basis of
P3, S = {1, x, x2, x3}? Does order matter?

Key Idea: I like to think of the coordinate vector of v relative to a basis as the “instruction
manual” for how to put the basis elements together to create v.

Example 5.2. Let V = {ax2 + (b)x + (c) ∈ P2| a + b − 2c = 0}. One basis for V is
B = {−x2 + x, 2x2 + 1} (check this on your own).

a) Since v = 3x2 − 3x ∈ V , we can write v as a coordinate vector with respect to B.

b) Now suppose we know the coordinates for a vector w are [w]B =

(
2

−1

)
. We can use

this to determine what w actually is in V.

77



Let’s now consider representations of a vector when we view the vector space in terms of two

different bases.

Example 5.3. Let V =

{(
a b− a

a+ b a+ 2b

)∣∣∣∣ a, b ∈ R
}
. Archer has found one base for

V : B1 = {
[
1 −1
1 1

]
,

[
0 1
1 2

]
}. Eva has used the basis to construct another basis for V:

B2 = {
[
1 0
2 3

]
,

[
1 −2
0 −1

]
}.

a) Find a vector such that [w]B1 =

[
1
2

]
.

b) Write find the coordinates of the vector your found in terms of Eva’s basis.(That is find
the instruction manual to build it from Eva’s basis.)
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Reading Example:

Example 5.4. Let V = {ax2 + (b− a)x+ (a+ b)|a, b ∈ R}. Find a basis for V and find the
coordinate vector for v = 3x2 + x+ 7 ∈ V with respect to this basis.

V = {a(x2 − x+ 1) + b(x+ 1)| a, b ∈ R} = span{x2 − x+ 1, x+ 1}.
So a basis for V is

B = {v1 = x2 − x+ 1, v2 = x+ 1}.
This means that dimV = 2 and so vectors in V can be represented by vectors in R2. Notice
that v = 3x2 + x+ 7 ∈ V . You actually should be able to check this (a = 3, b = 4). We can
write v in terms of the basis of V as v = 3v1 + 4v2. We can check this as follows

3v1 + 4v2 = 3(x2 − x+ 1) + 4(x+ 1) = 3x2 + x+ 7.

Thus, the coordinate vector for v is [v]B =

(
3
4

)
.

79



80



6 Matrix Forms of Linear Transformations:

Now that we have discussed coordinate vectors in more detail, let’s go back to the reason
why we went down that bunny trail.

Recall, we wanted to be able to define a linear transformations with a matrix, but the issue
is that we can’t just multiply a vector, in say P2, by a matrix.

The Key is to use Coordinate Vectors!

Given a basis for V , we are able to represent any vector v ∈ V as a coordinate vector in
Rn, where n = dimV . Suppose B = {v1, v2, . . . , vn} is a basis for V , then we find the
coordinate vector [v]B by finding the scalars, αi, that make the linear combination v =
α1v1 + α2v2 + . . .+ αnvn and we get

[v]B =




α1

α2
...

αn


 ∈ Rn.

After our next section, we will talk a little bit more about the theory behind why we con-
struct the matrix of a linear transformation (and how we create a linear transformation that
changes basis representation) later.

Our goal is to create a matrix that does what we want: [T (v)]BW
= M [v]BV

.

So given a Linear Transformation T : V → W , we first need to convert vectors in V into
vectors in Rn. To do this we create the coordinate vector for each basis element in the
standard basis. We then take the image of each basis element from V, T (v) and write it as
a coordinate vector in BW . We do this one basis element at a time and construct a matrix
so that

M [v1]BV
= [T (v1)]BW

M [v2]BV
= [T (v2)]BW

...

M [vn]BV
= [T (vn)]BW

.

Notice that
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[v1]BV
=




1
0
0
...
0



and [v2]BV

=




0
1
0
...
0



, etc....

So, M [v1]BV
gives the first column of M , M [v2]BV

gives the second column of M , . . ., and
M [vn]BV

gives the nth column of M . Thus, we have that

M =




| | |

[T (v1)]BW
[T (v2)]BW

. . . [T (vn)]BW

| | |




Steps for finding the Matrix Form of a Linear Transformation:

To find a matrix form for the linear transformation T : V → W :
Example: T : P2 → M2×2

Step 1: Find bases for the domain (in this example, this is V) and co-domain (in this
example, this is W).

Ex: V = P2 so BV = and W = M2×2 so BW =

Step 2: For each element of the basis of the domain (in this example, this is V), BV , find
its image after apply T to it.

Ex: T (vi) for BV :

Step 3: Write the image as a coordinate vector with respect to the basis for co-Domain (in
this example, this is W), BW .

Ex: [T (vi)]BW
: [T (1)]BW

, [T (x)]BW
, [T (x2)]BW

Step 4: Create M using the coordinate vectors you created in Step 3: M = [T (v1)BW
, T (v2)BW

, ..., T (vn)BW
, ]

Ex: Our matrix would be:

Useful, but optional step: Check that your matrix works to see if you get the same thing
as you would with the original transformation.

Note if you go from an n dimensional space to an m dimensional space, your matrix will be
an m× n matrix.
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Example 6.1. Find a matrix form for the linear transformation T : P1 → P2 where
T (ax+ b) = ax2 + (a+ b)x− b.

First of all, since we are going from a domain of V = P1 which is a dimensional
vector space to a codomain of W = P2 which is a dimensional vector space. The
matrix we create should have the dimensions × .

Step 1: Find bases for V and W.
BV =

BW

Step 2: For each element of the basis of V, BV , find its image after apply T to it.

Step 3: Write the image as a coordinate vector with respect to the basis for W, BW .

Step 4: Create M using the coordinate vectors you created in Step 3: M =

Check that your matrix works to see if you get the same thing as T (8x+ 4)
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Example 6.2. Let’s try to find a matrix representation for the linear transformations in
Exercise 4.2. That is, define a matrix representation for the linear transformation: T :

R3 → R is defined as follows. T




a
b
c


 =

(
a+ b+ c

)
.

Example 6.3. The linear transformation T : R2 → R2 where T (x, y) = (x + 2y, x − 2y),

can be written as a matrix transformation T (x, y) = A

[
x
y

]
where

(a) A =

[
x 2y
x −2y

]

(b) A =

[
1 2
1 −2

]

(c) A =

[
1 −2
1 2

]

(d) It can’t be written in matrix form.
(e) Archer is my favorite.

Example 6.4. The linear transformation T (x, y) =

[
−1 0
0 1

]
·
[
x
y

]
, can be written as

(a) T (x, y) = (x, y)
(b) T (x, y) = (y, x)
(c) T (x, y) = (−x, y)
(d) T (x, y) = (−y, x)
(e) None of the above
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Things get a little stranger when you look at subspaces. When you have this type of situation,
you must first find a basis for the subspace of V.

Example 6.5. Find a matrix representation for the Linear Transformation

h : V → P1, where V =

{(
a b c
0 b− c 2a

)∣∣∣∣ a, b, c ∈ R
}

⊆ M2×3 and

h

(
a b c
0 b− c 2a

)
= ax+ c.

85



6.0.1 Radiographic Connection

When working with radiographic transformations, we found a matrix using tomomap. But, our

objects weren’t vectors in RN that could be multiplied by the matrix we found. Let’s use the above

information to explore, through an example, what was really happening. Let V = I2×2, the space

of 2 × 2 objects. Let T be the radiographic transformation with 6 views having 2 pixels each.

This means that the codomain is the set of radiographs with 12 pixels. To figure out the matrix

M representing this radiographic transformation, we first change the objects in V to coordinate

vectors in R4 via the isomorphism T1. So T1 is defined by:




x1

x2

x3

x4




x1

x2

x3

x4

V

T1

R4

After performing the matrix multiply, we will change from coordinate vectors in R12 back to radio-

graphs via T2. So T2 is defined by by:




b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12




WR12

b2b1
b4b3
b6b5
b8b7
b10b9
b12b11

T2

Our radiographic transformation is then represented by the matrix M (which we called T in
the labs). M will be a 12× 4 matrix determined by the radiographic set up. We’ve computed
M several times in previous labs, but the real mathematics was all a bit hand-wavy and so now
we see that really, what we have is that T maps from V to W by taking a side excursion through
coordinate spaces and doing a matrix multiply.

Note: Typically, to simplify notation, we write T (v) = Mv when we actually mean [T (v)]BW
=

M [v]BV
. This is understandable by a mathematician because we recognize that when two spaces

are isomorphic, they are “essentially” the same set. The only difference is that the vectors look

different. In this class, we will maintain the notation discussed in this section being aware that this

is just to get used to the ideas before relaxing our notation.
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6.0.2 ICE 5 -Matrix Linear Transformations

1. Let’s try to find a matrix representation for the linear transformation in Exercise
4.3.That is, Define a matrix representation for the linear transformation: T : P2 → P1,
where T (ax2 + bx+ c) = 2ax+ b.

2. Suppose T : P2 → P1 where T (ax2 + bx + c) = (a − 2b)x + a − c. Find a matrix
representation for this linear transformation.
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3. Slightly more challenging example: Let V = {ax2+(b−a)x+(a+ b)| a, b ∈ R} and let
W = M2×2. Consider the transformation T : V → W defined by T (ax2 + (b − a)x +

(a+ b)) =

(
a b− a

a+ b a+ 2b

)
.

Construct the Matrix Representation of T. Remember you will need to find bases for
V and W!
Note: Archer thinks the basis for V is {

[
1 −1 1

]
,
[
0 1 1

]
, }
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7 Properties of Transformations

7.1 Injective and Surjective Transformations

Recall, a linear transformation is just a function with special properties. 7

In Lab # 3, we will see several properties of linear transformations that are useful to recog-
nize. We will see that it is possible for two objects to produce the same radiograph. This can
be an issue in the case of brain radiography. We would like to know if it would be possible
for an abnormal brain to produce the same radiograph as a normal brain. We also will see
that it was possible to have radiographs that could not be produce from any object. This
becomes important in being able to recognize noise or other corruption in a given radiograph.
Again, it turns out that these properties are not only important in radiography. There are
many other scenarios (some application based and some theoretical) where we need to know
if a transformation has these properties. So, let’s define them.

Due to the press for time in this course and the “applied” focus for the course, we will not
dwell as much on proving transformations have these properties. Later we will have a more
computational way to check these properties. I will provide some of the arguments though
for completeness and for reference.

Definition 7.1. Let V and W be vector spaces. We say that the transformation T : V → W
is injective if the following property is true:
Whenever T (u) = T (v) it must be true that = .

A transformation that is injective is also said to be one-to-one (1-1) or an injection.

Idea:

7Image used with permission from https://www.probabilitycourse.com
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Process to show Injectivity: Start with two arbitrary elements in the range of T and
suppose they are equal, that is suppose T (u) = T (v) and work backwards to see if u = v. In
other words, can we find two possible input values that map to the same output? If yes, T
is NOT injective.

v1

v4

v5

v6

v3

v2 w3

w4

w5

w6

w7

w2

w1 v1

v4

v5

v6

v3

v2 w3

w4

w5

w6

w7

w2

w1

Figure 5: Notice, we see that the transformation represented on the left is 1-1, but the
transformation represented on the right is not because both v1 and v2 map to w4, but
v1 ̸= v2.

Example 7.1. Let T : R2 → M3×2 be the linear transformation defined by T

(
a
b

)
=




a −b
b a+ b
0 −a


 . Determine whether it is one-to-one.

Proof. To show: T is injective/(one-to one)
Assume

T

(
a
b

)
= T

(
c
d

)

Then



a −b
b a+ b
0 −a


 =




c −d
d c+ d
0 −c




Matching up entries, gives us a = c,−b = −d, b = d, a + b = c + d, 0 = 0, and −a = −c.
Thus, (

a
b

)
=

(
c
d

)
.

So, by definition, T is one-to-one.
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Example 7.2. Let T : P2 → R2 be defined by T (ax2 + bx+ c) =

(
a− b
b+ c

)
. Notice that T

is a linear transformation. Is T an injection?

Proof. T is not injective, notice that both x+ 4 and 5− x2 map to

[
−1
5

]
,

that is T (x+ 4) = T (5− x2) =

[
−1
5

]
.

But how could we determine this? Here is another way.

Suppose T (ax2+bx+c) = T (ex2+fx+g), this implies (after apply T) that

[
a− b
b+ c

]
=

[
e− f
f + g

]
.

This means (after matching the entries) that

{
a− b = e− f

b+ c = f + g

We can set up the augmented equation to solve this:

(
1 −1 0 e− f
0 1 1 f + g

)

Notice we have a free variable which means we have the freedom to play a bit. At this point,
we should be suspicious that this transformation is NOT one-to-one, but we need to find
an output that has 2 different inputs that can map to it. So for example, we can pick any
values for e, f, and g like e = 1, f = 2, g = 3 to help us find one of the two vectors which
can show that we break the injectivity requirement.

Now we need to solve:

{
a− b = e− f

b+ c = f + g
⇒

{
a− b = 1− 2

b+ c = 2 + 3
⇒

{
a− b = −1

b+ c = 5

So now we have this system to solve:(
1 −1 0 −1
0 1 1 5

)

Solving this gives us
a = −1 + b
b = free baby!
c = 5− b.

So we can pick two different values for b. In the example above we picked b = 1 which means
a = 0, c = 4 which gives the vector x+ 4. We then picked b = 0 which means a = −1, c = 5
which gives us the vector −x2 + 5.
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Definition 7.2. Let V and W be vector spaces. We say that the transformation T : V → W
is surjective if every element in W is mapped to. That is, if w ∈ W , then there exists a
v ∈ V so that = .

A transformation that is surjective is also said to be onto or a surjection.

Idea: Dr. Harsy is going to do her absolute worst to present you with the most obscure
element of the codomain. Are you certain that this function will be able to map to this
element no matter what Dr. Harsy presents you with?

Process to show surjectivity: Pick an arbitrary element in co-domain, find an element
that maps to it.

Example 7.3. Consider the function f : R → R where f(x) = x2. Note that this is neither
injective nor onto (and isn’t a linear transformation either). Why?

Example 7.4. Determine which of the maps below are surjective and which maps are injective.

v1

v4

v5

v3

v2 w3

w4

w5

w2

w1

v6

v1

v4

v5

v3

v2 w3

w4

w5

w2

w1

v6

Figure 6:

v1

v4

v5

v6

v3

v2 w3

w4

w5

w6

w7

w2

w1 v1

v4

v5

v6

v3

v2 w3

w4

w5

w6

w7

w2

w1

Figure 7:
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Example 7.5. Let T : R2 → M3×2 be defined by T

(
a
b

)
=




a −b
b a+ b
0 −a


 . We already

showed this linear transformation was one-to-one in Ex 7.1. Is it onto?

Proof. Notice that,

w =




1 1
1 1
1 1


 ∈ M3×2.

But, there is no v ∈ R2 so that T (v) = w because every output has a 0 in the (3, 1) entry.

Example 7.6. Let T : R2 → P1 be defined by T

(
a
b

)
= 2ax + b. Is this map 1-to-1 or

onto?

Proof. T is 1-to-1:

Suppose T

(
a
b

)
= T

(
c
d

)
. Then implies 2ax + b = 2cx + d. Matching up like terms

gives us that

{
2a = 2c

b = d
Solving this, gives us a = c and b = d. That is

(
a
b

)
=

(
c
d

)
.

Therefore T is one-to-one.

T is also onto:
We want to pick an arbitrary representative of a vector in the codomain, P1, say ax + b

and we want to find a vector in the domain, R2,

[
c
d

]
such that T (

[
c
d

]
) = ax + b. Let

w = ax + b ∈ P1, and Notice also that v =

[
a
2

b

]
∈ R2 maps to ax + b. Thus T (v) = w.

Therefore, T is onto.
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7.1.1 ICE 5 -Injective and Surjective Linear Transformations

For the next 4 questions, try to construct the following transformations. If you can, justify
or prove that your transformation has the property you claim it has or give an argument
why it is impossible.

1. If possible, create a transformation that maps from R3 to P1 that is surjective.

2. If possible, create a transformation that maps from R3 to P1 that is injective.
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3. If possible, create a transformation that maps from P1 to R3 that is injective.

4. If possible, create a transformation that maps from P1 to R3 that is surjective.

5. What do you notice? Given T : V → W
In order for T to be injective, the dim V needs to be than dim W.
In order for T to be surjective, the dim V needs to be than dim W.
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7.2 Bijections and Isomorphisms

We see above that sometimes a linear transformation can be both injective and surjective.
In this subsection we discuss this special type of linear transformation.

Definition 7.3. We say that a linear transformation, T : V → W , is bijective if T is both
injective and surjective. We call a bijective transformation a bijection or an isomorphism.

Definition 7.4. Let V and W be vector spaces. If there exists a bijection mapping between
V and W , then we say that V is isomorphic to W and we write V ∼= W .

Example 7.7. Notice that 7.5 we found that T was a bijection. This means that P1
∼= R2.

Notice also that dimP1 = dimR2. This is not a coincidence.

Lemma 7.1. Let V and W be vector spaces. Let B = {v1, v2, . . . , vn} be a basis for V .
T : V → W is an injective linear transformation if and only if {T (v1), T (v2), . . . , T (vn)} is
a linearly independent set in W .

Proof. As with every proof about linear dependence/independence, we will assume the fol-
lowing linear dependence relation is true. Let α1, α2, . . . , αn be scalars so that

α1T (v1) + α2T (v2) + . . .+ αnT (vn) = 0.

Then because T is linear, we know that

T (α1v1 + α2v2 + . . .+ αnvn) = 0.

But, we also know that T (0) = 0. That means that

T (α1v1 + α2v2 + . . .+ αnvn) = T (0).

And, since T is 1-1, we know that (by definition)

α1v1 + α2v2 + . . .+ αnvn = 0.

Finally, since B is a basis for V , B is linearly independent. Thus,

α1 = α2 = . . . = αn = 0.

Thus, {T (v1), T (v2), . . . , T (vn)} is linearly independent.
Now suppose that T is linear, let B = {v1, v2, . . . , vn} be a basis for V , and suppose
{T (v1), T (v2), . . . , T (vn)} ⊂ W is linearly independent. Suppose u, v ∈ V so that T (u) =
T (v). So, T (u− v) = 0. Since u, v ∈ V , there are scalars α1, α2, . . . , αn and β1, β2, . . . , βn so
that

u = α1v1 + α2v2 + . . .+ αnvn and v = β1v1 + β2v2 + . . .+ βnvn.
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Thus
T ((α1 − β1)v1 + (α2 − β2)v2 + . . .+ (αn − βn)vn) = 0.

This leads us to the linear dependence relation

(α1 − β1)T (v1) + (α2 − β2)T (v2) + . . .+ (αn − βn)T (vn) = 0.

Since {T (v1), T (v2), . . . , T (vn)} is linearly independent, we know that

α1 − β1 = α2 − β2 = . . . = αn − βn = 0.

That is, u = v. So, T is injective.

Note: Notice that Lemma 7.1 tells us that if V is n-dimensional then basis elements of V
map to basis elements of an n-dimensional subspace of W . In particular, if dimW = n also,
then we see a basis of V maps to a basis of W . This is very useful and leads to the following
useful result.

Theorem 7.1. Given (finite dimensional) vector spaces V and W , then V ∼= W if and only
if dimV = dimW .

Proof. Suppose dimV = dimW . Suppose also that a basis for V is BV = {v1, v2, . . . , vn}
and a basis for W is BW = {w1, w2, . . . , wn}. Then we can define T : V → W to be the
linear transformation so that

T (v1) = w1, T (v2) = w2, . . . , T (vn) = wn.

We will show that T is an isomorphism. Now, we know that if w ∈ W , then w = α1w1 +
α2w2 + . . . + αnwn for some scalars α1, α2, . . . , αn. We also know that v = α1v1 + α2v2 +
. . .+ αnvn ∈ V . Since T is linear, we can see that

T (v) =T (α1v1 + α2v2 + . . .+ αnvn)

=α1T (v1) + α2T (v2) + . . .+ αnT (vn)

=α1w1 + α2w2 + . . .+ αnwn = w.

Thus, T is onto. Now, suppose that T (v) = T (u) where v = α1v1 + α2v2 + . . . + αnvn and
u = β1v1 + β2v2 + . . .+ βnvn are vectors in V . Then we have

T (α1v1 + α2v2 + . . .+ αnvn) =T (β1v1 + β2v2 + . . .+ βnvn)

α1T (v1) + α2T (v2) + . . .+ αnT (vn) =β1T (v1) + β2T (v2) + . . .+ βnT (vn)

α1w1 + α2w2 + . . .+ αnwn =β1w1 + β2w2 + . . .+ βnwn

(α1 − β1)w1 + (α2 − β2)w2 + . . .+ (αn − βn)wn = 0.

98



Notice that this last equation is a linear dependence relation for the basis BW . Since BW is
linearly independent, we know that

α1 − β1 = 0

α2 − β2 = 0

...

αn − βn = 0.

That is to say u = v. Thus, T is injective. And, therefore, since T is both injective and
surjective, T is an isomorphism. Now, since there is an isomorphism between V and W , we
know that V ∼= W .
Now we will prove the other direction. That is, we will show that if V ∼= W then dimV =
dimW . First, let us assume that V ∼= W . This means that there is an isomorphism,
T : V → W , mapping between V and W .
Suppose, for the sake of contradiction, that dimV ̸= dimW . Without loss of generality,
assume dimV > dimW . (We can make this assumption because we can just switch V ’s
and W ’s in the following argument and argue for the case when dimV < dimW .) Let
BV = {v1, v2, . . . , vn} be a basis for V and BW = {w1, w2, . . . , wm} be a basis for W . Then
m < n. We will show that this cannot be true. Lemma 7.1 tells us that since T is one-to-one,
the basis BV maps to a linearly independent set {T (v1), T (v2), . . . , T (vn)} with n elements.
But by Theorem 2.1, we know that this is not possible. Thus, our assumption that n > m
cannot be true. Again, the argument that tells us that n > m also cannot be true is very
similar with V ’s and W ’s switched. Thus, n = m. That is, dimV = dimW .

Careful: If we allow the dimension of a vector space to be infinite, then this is not neces-
sarily true. In this class, we restrict to discussions of finite dimensional vector spaces only.

This theorem gives us a tool for creating isomorphisms, when they exist. It also tells us that
isomorphisms exist between two vector spaces so long as they have the same .

Example 7.8. Suppose we have a linear transformation T : P2 → R2. Using dimensional
analysis, which of the following properties could T have: One-to-One, Onto, and/or Isomor-
phism?
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Example 7.9. Suppose we have a linear transformation matrix, A, what dimensions will A
need to have for it to possibly represent a bijective linear transformation?

Example 7.10. Let V = M2×3 and W = P5. We know that V ∼= W because both are
6-dimensional vector spaces. Indeed, a basis for V is

BV =

{(
1 0 0
0 0 0

)
,

(
0 1 0
0 0 0

)
,

(
0 0 1
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

)}

and a basis for W is BW = {1, x, x2, x3, x4, x5}. Create a bijection T that maps V to W .

Using the Theorem 7.1 we define T as follows

T

(
1 0 0
0 0 0

)
= , T

(
0 1 0
0 0 0

)
= , T

(
0 0 1
0 0 0

)
=

T

(
0 0 0
1 0 0

)
= , T

(
0 0 0
0 1 0

)
= , T

(
0 0 0
0 0 1

)
= .

Notice that if we have any vector v ∈ V , we can find where T maps it to in W . Since v ∈ V ,
we know there are scalars, a, b, c, d, e, f so that

v = a

(
1 0 0
0 0 0

)
+b

(
0 1 0
0 0 0

)
+c

(
0 0 1
0 0 0

)
+d

(
0 0 0
1 0 0

)
+e

(
0 0 0
0 1 0

)
+f

(
0 0 0
0 0 1

)
.

That is,

v =

(
a b c
d e f

)
.

Thus, since T is linear,

T (v) = a(1) + b(x) + c(x2) + d(x3) + e(x4) + f(x5) = a+ bx+ cx2 + dx3 + ex4 + fx5.
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8 Transformation Spaces

In Lab # 3, we saw more properties of linear transformations that were useful to recognize other

than injectivity and surjectivity. Some radiographic transformations cannot “see” certain objects

or we say that those objects are “invisible” to the transformation. In this application, we really

want to know if something might be present yet invisible to the transformation we are using. In

the case of brain scans, it would be most unhelpful if we cannot see certain abnormalities because

they are invisible to the radiographic setup. If something we want to look for in a brain scan

is invisible to our current setup, we can adjust the setup to “see” the object we are looking for.

Say, for example, we know that the object on the right in Figure 8 is invisible to our radiographic

transformation. Then when it is present along with what we expect (Figure from Example 1 from

our Linear Tranformation notes), we get the same radiographic transformation bexp and we might

go along our merry way, not knowing that something unexpected is present in our object so that

instead of what is seen in our Example 1 figure, we actually have what is on the left in Figure 8.

Figure 8:

8.1 Nullspace

Wanting to know which objects are “invisible” to a transformation extends beyond the application

of Radiography and Tomography. So, we define the space of all “invisible” objects below.

Definition 8.1. The nullspace of a linear transformation, T : V → W , is the subset of V
that map to 0 ∈ W . That is, null(T ) =

Sometimes this is called the Kernel of T, or ker(T).

Definition 8.2. We say that the nullity of a linear transformation, T , is the dimension of
the subspace null(T ).

To find the nullity: Find a basis for the nullspace (a spanning set that is linearly inde-
pendent) and count the number of vectors.
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Example 8.1. Let V = {ax2 + 2bx + b| a, b ∈ R} ⊆ P2. Define F : V → P1 by F(ax2 +
2bx+ b) = 2ax+ 2b. Find the nullspace of F .

In Example 8.1, the nullity is because there are no elements in the basis of nullF
and we say that F has a nullspace, or that the nullspace of F is trivial.

Example 8.2. Define f : M2×2 → R4 by f

(
a b
c d

)
=




a
b+ a
b
c


 . Find null(f).

In Example 8.2 the nullity is because there is element in the basis for the

nullspace.

Also notice that there is more than one element of the nullspace.

That means, since f

(
0 0
0 1

)
= f

(
0 0
0 2

)
=

(
0 0
0 0

)
, but

(
0 0
0 1

)
̸=

(
0 0
0 2

)
,

f is not .
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Note: The above examples are indeed examples of linear transformations (See Linear Trans-
formation Notes).

Comment: The name “nullspace” seems to imply that this set is a .
In fact, we have discussed basis and treated it as if it is a vector space in Lab 3 and other
examples. The next theorem justifies this treatment.

Theorem 8.1. Given vector spaces V and W and a linear transformation T : V → W , the
nullspace null(T ) is a of V .

Proof. By definition of null(T ), we know that null(T ) ⊆ V . We also know that the zero vector
always maps to 0. Thus 0 ∈ null(T ). Now, let α and β be scalars and let u, v ∈ null(T ).
Then T (u) = 0 and T (v) = 0. Thus, since T is linear, we have

T (αu+ βv) = αT (u) + βT (v) = α · 0 + β · 0 = 0.

So, αu+ βv ∈ null(T ). Therefore, null(T ) is a subspace of V .

8.1.1 Nullspace of a Matrix

Recall any linear transformation has a matrix representation. So the Matrix Spaces are defined
analogously to linear transformations spaces. And Matrix Reduction makes the calculations easier.

Definition 8.3. The nullspace, null(M), of an m × n matrix M is the nullspace of the corre-
sponding transformation, T , where T (x) = Mx for all x ∈ Rn.
That is, null(M) =

Example 8.3. Given the matrix M =




1 1 1
2 1 −1

−1 0 2


, Determine null(M).8:

8




1 1 1 0
2 1 −1 0

−1 0 2 0


 R2=−2r1+r2−→

R3=r1+r3




1 1 1 0
0 −1 −3 0
0 1 3 0


 R1=r2+r1,R2=−r2−→

R3=r2+r3




1 0 −2 0
0 1 3 0
0 0 0 0


 .
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8.2 Range Spaces

When considering a transformation, we want to know to which vectors we are allowed to apply the
transformation. In the case of a Radiographic transformation, we wonder what is the shape and
size of objects/images that the particular radiographic transformation uses. This was all part of
our radiographic setup. As with most functions, this set is called the . In linear algebra,
we consider only sets that are vector spaces. So, it is often referred to as the space.
There is also a space to which all of the vectors in the domain space map. This space is defined
next.

Definition 8.4. We say that the codomain of a linear transformation, T : V → W , is the vector
space to which we map. That is, the codomain of T : V → W is .

In Examples 8.1 and 8.2 the codomains are P1 and R4, respectively. The codomain tends to be
much less interesting for a given problem than the set of all thing mapped to. Often not all the
vectors in the codomain are mapped to. If they were, then we would say that T is .

Definition 8.5. We say that the range space of a linear transformation, T : V → W , is the
subspace of the codomain W that contains all of the outputs from V under the transformation T .
That is, ran(T ) =

Definition 8.6. We say that the rank of a linear transformation, T , is the dimension of the
subspace ran(T ).

To find the rank: Find a basis for the range space of T (a spanning set that is linearly indepen-
dent) and count the number of vectors.

Theorem 8.2. Let V and W be vector spaces and let T : V → W be a linear transformation. Then
ran(T ) is a of W .

So the range is a space.

Proof. By definition of ran(T ), we know that null(T ) ⊆ W . Since V is a vector space, 0 ∈ V . The
zero vector always maps to 0, thus T (0) = 0 ∈ W . Thus 0 ∈ ran(T ). Now, let α and β be scalars
and let u,w ∈ ran(T ). This means there exists a v1, v2 ∈ V such that T (v1) = u and T (v2) = w
Thus, since T is linear, we have

T (αv1 + βv2) = αT (v1) + βT (v2) = α · u+ β · w.

So, there exists a v ∈ V , v = αv1 + βv2, such that T (v) = αu+ βw. Therefore αu+ βw ∈ ran(T )
and thus, ran(T ) is a subspace of W .
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Example 8.4. Define F : V → P1, where V = {ax2+2bx+b| a, b ∈ R} ⊆ P2. by F(ax2+2bx+b) =
2ax+ 2b. Show that the range of F is P1.

Since ran(F) = P1, the rank of F is .
And in fact, this means F is an map!
Note: As we have seen the codomain need not be the range. This is only true if our map is onto.

Example 8.5. Define f : M2×2 → R4 by f

(
a b
c d

)
=




a
b+ a
b
c


 . Find ran(f). What is the

rank of f?

Note: In the example above, the codomain is and ran(f) ̸= . That means
there are elements in R4 that are not mapped to through f . That is, f is not .

8.2.1 Column/Range Space for Matrix

Definition 8.7. The range space, ran(M) for an m× n matrix is the set ran(M) =
This is often called the Column Space of M, denoted Col(M).
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Note: To find Col(M), we want to find all b ∈ Rm so that there is an v ∈ Rn so that Mv = b.

Process: To find a basis for the column space of a matrix M:
1) Use elementary row operations to write M in RREF.
2) Identify the columns that have pivots.
3) The basis for Col(M) will be the span of the columns of the original M associated with the
pivot columns.

Example 8.6. Given the matrix M =




1 1 1
2 1 −1

−1 0 2


, Determine ran(M). We have Row reduced

M below:


1 1 1
2 1 −1

−1 0 2


 R2=−2r1+r2−→

R3=r1+r3




1 1 1
0 −1 −3
0 1 3


 R1=r2+r1,R2=−r2−→

R3=r2+r3




1 0 −2 0
0 1 3 0
0 0 0 0




Aside: An alternate way to solve Example 8.6, is to row reduce the augmented matrix below:




1 1 1 a
2 1 −1 b

−1 0 2 c


 R2=−2r1+r2−→

R3=r1+r3




1 1 1 a
0 −1 −3 −2a+ b
0 1 3 a+ c


 R1=r2+r1,R2=−r2−→

R3=r2+r3




1 0 −2 −a+ b
0 1 3 2a− b
0 0 0 −a+ b+ c


 .

We then look at the requirements for this system to be consistent and use this to find our basis.
Note that our basis spans the same set that we found in Ex 8.6.
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8.3 Injectivity and Surjectivity Revisited

Let’s consider this discussion again from the point of view of radiography. We saw that some trans-
formations had the property where two objects could give the same radiograph. This particular
radiographic transformation would not be . Furthermore, we found that if two objects
produce the same radiograph, that there difference would then be invisible. That is, the difference
is in the of the radiographic transformation. Thus if there is an object that is invisible
to the radiographic transformation, any scalar multiple of it will also be invisible. This means that
two different objects are invisible, producing the same radiograph, 0. Therefore, the radiographic
transformation would not be injective.

Theorem 8.3. A linear transformation, T : V → W , is injective if and only if .

Proof. Let T : V → W be a linear transformation. First we will prove that if T is injective then
null(T ) = {0}. Since T is an linear transformation, T (0) = 0. Because T is an injection, only one
vector can map to 0. Thus null(T ) = {0} and there is nothing else that can be in this set.

On the other hand, suppose null(T ) = {0}. We want to show T is an injection and we will prove
this by showing that the contrapositive statement is true. That is, we will prove if T is not injective
then null(T ) ̸= {0}. Suppose T is not injective. This means there exists at least 2 vectors, say u
and v both in V such that u ̸= v, but T (u) = T (v). Thus T (u)−T (v) = 0. By linear transformation
properties, 0 = T (u)−T (v) = T (u− v). Thus (u− v) ∈ null(T ) and therefore null(T ) ̸= {0}. Since
we have show that the contrapositive statement is true, the original statement is also true and thus,
null(T ) = {0} =⇒ T is injective.

Therefore T is injective ⇐⇒ null(T ) = {0}

New process to determine Injectivity: We now have a computational way to determine if a
linear transformation is injective. Just find the Nullspace (or nullity)!

Recall, also, that we found that there were radiographs that could not be produced from an object
given a certain radiographic transformation. This means that there is a radiograph in the codomain
that is not mapped to from the domain. If this happens, the radiographic transformation is not

.

Theorem 8.4. Let V and W be vector spaces and let T : V → W be a linear transformation. T is
surjective if and only if ran(T ) = .

Proof. Suppose ran(T ) = W then, by definition of ran(T ) if w ∈ W , there is a v ∈ V so that
f(v) = w. Thus T is onto. Now, if T is onto, then for all w ∈ W there is a v ∈ V so that
T (v) = w. That means that W ⊆ ran(T ). But, by definition of T and ran(T ), we already know
that ran(T ) ⊆ W . Thus, ran(T ) = W .
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Corollary 8.1. T : V → ran(T ) is a bijection if and only if null(T ) = {0}.

Proof. Note since the codomain is equal to the range for this transformation, T is onto.

Suppose T is one-to-one and suppose that u ∈ null(T ). Then T (u) = 0. But, T (0) = 0. So, since
T is 1-1, we know that u = 0. Thus, null(T ) = {0}.

Now, suppose null(T ) = {0}. We want to show that T is 1-1. Notice that if u, v ∈ V satisfy

T (u) = T (v)

then
T (u)− T (v) = 0.

But since T is linear this gives us that

T (u− v) = 0.

Thus, u− v ∈ null(T ). But null(T ) = {0}. Thus, u− v = 0. That is, u− v. So, T is 1-1.

These theorems give us tools to check injectivity and surjectivity. Let’s see how...

Example 8.7. Define F : V → P1, where V = {ax2+2bx+b| a, b ∈ R} ⊆ P2. by F(ax2+2bx+b) =
2ax+ 2b. Show that V ∼= P1 using Example 8.1 and 8.4.
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Example 8.8. Define f : M2×2 → R4 by f

(
a b
c d

)
=




a
b+ a
b
c


 . Use Example 8.2 and 8.5 to

determine whether this map is injective or surjective.

8.4 The Rank-Nullity Theorem

In each of the last examples of the previous section, we saw that the following theorem holds:

Theorem 8.5. The Rank Nullity Theorem: Let V and W be a vector spaces and let T : V → W
be a linear transformation. Then the following is true

dimV = + .

Recall, dimV= the number of vectors in a basis for V.

Proof. Let B = {v1, v2, . . . , vn}.
First, we consider the case when ran(T ) = {0}. Then, ran(T ) has no basis, so rank(T ) = 0. We
also know that if v ∈ V then T (v) = 0. Thus, B is a basis for null(T ) and nullity(T ) = n. Thus,
rank(T )+nullity(T ) = n.
Next, we consider the case when null(T ) = {0}. In this case, null(T ) has no basis so nullity(T ) = 0.
Now, we refer to Lemma 7.1 and Theorem 8.3. We then know that {T (v1), T (v2), . . . , T (vn)}
is linearly independent and we also know that span {T (v1), T (v2), . . . , T (vn)} = ran(T ). Thus,
{T (v1), T (v2), . . . , T (vn)} is a basis for ran(T ) and rank(T ) = n. Thus, rank(T )+nullity(T ) = n.
Finally, we consider the case where rank(T ) = m and nullity(T ) = k. Let

BN = {v1, v2, . . . , vk}
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be a basis for null(T ). And let

BR = {T (vk+1), T (vk+2), . . . , T (vk+m)}

be a basis for ran(T ). Notice that we know that none of the elements of B are zero (for otherwise this
set would not be linearly independent). So, we know that none of T (v1), T (v2), . . . , T (vk) ∈ BR. We
also know that span {T (v1), T (v2), . . . , T (vn)} = ran(T ) so there must be m linearly independent
vectors in {T (v1), T (v2), . . . , T (vn)} that form a basis for ran(T ). So, our choice of vectors for the
basis of BR makes sense.
Our goal is to show that m + k = n. That is, we need to show that B = {v1, v2, . . . , vk+m}. We
know that {v1, v2, . . . , vk+m} ⊆ B. We need to show that if v ∈ B then v ∈ {v1, v2, . . . , vk+m}.
Suppose v ∈ B. Then T (v) ∈ ran(T ). Suppose v /∈ null(T ) (for otherwise, v ∈ BN .) Then there are
scalars α1, α2, . . . , αm so that

T (v) = α1T (vk+1) + α2T (vk+2) + . . .+ αmT (vk+m).

So
α1T (vk+1) + α2T (vk+2) + . . .+ αmT (vk+m)− T (v) = 0.

Using that T is linear, we get

T (α1vk+1 + α2vk+2 + . . .+ αmvk+m − v) = 0.

Thus
α1vk+1 + α2vk+2 + . . .+ αmvk+m − v ∈ null(T ).

So either
α1vk+1 + α2vk+2 + . . .+ αmvk+m − v = 0

or
α1vk+1 + α2vk+2 + . . .+ αmvk+m − v ∈ span BN .

If
α1vk+1 + α2vk+2 + . . .+ αmvk+m − v = 0

Then v ∈ span BT , but this is only true if v ∈ BT because B is linearly independent and v ∈ B and
all the elements of {vk+1, vk+2, . . . , vk+m} are also in B. Now, if

α1vk+1 + α2vk+2 + . . .+ αmvk+m − v ∈ span BN

then v ∈ BN again because v ∈ B and so are all the elements of BN .
Thus, v ∈ {vk+1, vk+2, . . . , vk+m}. So, we have that B = {vk+1, vk+2, . . . , vk+m}. Thus k +m = n.
That is, nullity(T )+rank(T ) = n.

Important: A quick result of this theorem says that we can separate the basis of V into those
that map to 0 and those to a basis of ran(T ). More specifically, we have the following result.
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Corollary 8.2. Let V and W be vector spaces and let T : V → W be a linear transformation. If
B = {v1, v2, . . . , vn} is a basis for V , then {T (v1), T (v2), . . . , T (vn)} = Br where Br is a basis of
ran(T ).

Proof. We can see in the proof of Theorem 8.5 that B was split into two sets {v1, v2, . . . , vk}
(a basis for null(T )) and {vk+1, vk+2, . . . , vn}, (where {T (vk+1), T (vk+2), . . . , T (vn)} is a basis for
ran(T )).

The Rank Nullity Theorem is useful in determining rank and nullity, along with proving results
about subspaces.

Example 8.9. Given a linear transformation T : M2×5 → P4.
How do we know that T cannot be one-to-one?9

.

9Notice, we didn’t know anything about T except for the spaces from and to which it maps.
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Reading Example:

Example 8.10. Define g : V → R3, where V = P1 by g(ax + b) =




a
b

a+ b


 . Show that g is

injective and find the range space.

Notice that null(g) = {ax+ b| a, b ∈ R, g(ax+ b) = 0}

= {ax+ b| a, b ∈ R,




a
b

a+ b


 =




0
0
0


} = {ax+ b| a = 0, b = 0} = {0}.

Thus, g is injective.
Now we find the range space.

ran(g) = {g(ax+ b)| a, b ∈ R} =








a
b

a+ b



∣∣∣∣∣∣
a, b ∈ R



 = span








1
0
1


 ,




0
1
1







Notice that since rank(g) = 2 and dimR3 = 3, R3 ̸= ran(g) and thus g is not onto.
Notice also that dimV = 2, nullity(g) = 0, and rank(g) = 2.
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8.4.1 ICE 7: Column Space, Row Space, Nullspace

Let A =




1 0 2 3 1
0 2 −1 1 2
0 1 0 1 1
3 −1 0 2 2


. The Row Reduced Echelon form of A is




1 0 0 1 1
0 1 0 1 1
0 0 1 1 0
0 0 0 0 0


.

Note: A is the matrix representation of some linear transformation.

1. A maps from a dimensional space to a dimensional space.

2. True or False: The column space of A is a subspace of R4.
(a) True and I am very confident.
(b) True, but I am not very confident.
(c) False, but I am not very confident.
(d) False and I am very confident.

3. True or False: The nullspace of A is a subspace of R4.
(a) True and I am very confident.
(b) True, but I am not very confident.
(c) False, but I am not very confident.
(d) False and I am very confident.

4. What is the dimension of the column space of A?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

5. What is the dimension of the nullspace of A?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

6. What is the rank of the linear transformation represented by the matrix A?

(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
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7. Which columns would form a basis for the column space of A?

where A =




1 0 2 3
0 2 −1 1
0 1 0 1
3 −1 0 2


 and the Row Reduced Echelon form of A is




1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0


.

(a) All four
(b) The first three
(c) Any three
(d) Any two

8. The column space of a matrix A is the set of vectors that can be created by taking all linear

combinations of the columns of A. Is the vector b =

[
−4
12

]
in the column space of the matrix

A =

[
1 2
3 6

]
?

(a) Yes, since we can find a vector x so that Ax = b.

(b) Yes, since −2

[
1
3

]
−
[
2
6

]
=

[
−4
12

]

(c) No, because there is no vector x so that Ax = b.

(d) No, because we can’t find α and β such that α

[
1
3

]
+ β

[
2
6

]
=

[
−4
12

]

e) More than one of the above.

9. The row space of a matrix A is the set of vectors that can be created by taking all linear
combinations of the rows of A. Which of the following vectors is in the row space of the

matrix A =

[
1 2
3 6

]
?

(a) x =
[
−2 4

]

(b) x =
[
4 8

]

(c) x =
[
0 0

]

(d) None of the above
(e) More than one of the above

10. The column space of the matrix A =

[
1 2
3 6

]
is

(a) the set of all linear combinations of the columns of A.
(b) a line in R2.

(c) the set of all multiples of the vector

[
1
3

]

(d) All of the above
(e) None of the above

114



9 Inverse Transformations

Example 9.1. If T : V → W and M is the matrix representation of T . What can you say about
dimension of M if T is injective?

a) M has the same number of rows and columns
b) The number of rows of M is greater than or equal to the number of columns
c) The number of rows of M is less than or equal to the number of columns
d) Nothing, but I love Linear Algebra!

Example 9.2. If T : V → W and M is the matrix representation of T . What can you say about
dimension of M if T is onto?

a) M has the same number of rows and columns
b) The number of rows of M is greater than or equal to the number of columns
c) The number of rows of M is less than or equal to the number of columns
d) Nothing, but I love Linear Algebra!

9.1 Connection to Tomography

In this class, we’ve actually talked about an application: Radiography/Tomography. Well, we
haven’t talked about the Tomography part. We will get there. First note that nobody ever really
computes the radiograph. This is done using a machine that sends x-rays through something. But
what people want to be able to do is to figure out what the object being radiographed looks like.
This is the idea behind Tomography. So, we do need to be able to find the object that was produced
by a certain transformation.
Suppose we know that T : Rn → Rm is the transformation given by T (v) = Mv where M ∈ Mm×n.
Suppose also that we know that the vector w ∈ Rm is obtained by Tv for some v, but we don’t
know which v. How would we find it? Basically we want a way to work backwards!

9.2 The Inverse Matrix, when m = n

Recall, an inverse function of T, is a function such that T ◦T−1(x) = x. As we learned in Calculus,
it can be difficult to construct inverse functions and sometimes they don’t even exist! But when
we have a bijective transformation, T : V → W , we can construct an inverse transformation
T−1 : W → V .
Sometimes it can be difficult to construct these inverse linear transformations, but this isn’t too
bad when we have a matrix transformation.

Definition 9.1. Let M be an n × n square matrix. We say that M has an inverse (and call it
M−1) if and only if

MM−1 = M−1M = In×n,

where In×n is the square identity matrix. If M has an inverse, we say that it is invertible

115



Algorithm to find the inverse of A.
Row reduce the augmented matrix: [A|I], if A is row equivalent to I, then row reducing gives us
[I|A−1]. Otherwise, A does not have an inverse.

We can find the inverse of a matrix, A, in Octave by typing:

Example 9.3. Find M−1 when M =

(
1 3
0 1

)
.10

Example 9.4. Find the inverse of M =

(
1 2
2 4

)

Again, we begin by reducing the augmented matrix
(

M e1 e2
)
as follows:

(
1 2 1 0
2 4 0 1

)
→

(
1 2 1 0
0 0 −2 1

)
.

This cannot be reduced further. From the reduced echelon form, we see that there is no vector v so
that Mv = e1 nor is there a vector v so that Mv = e2. That is, there is no matrix M−1 so that
MM−1 = I2×2, the identity matrix. So, M does not have an inverse.

Lemma 9.1. The inverse of A =

[
a b
c d

]
is A−1 = 1

ad−bc

[
d −b
−c a

]

Proof. Notice 1
ad−bc

[
d −b
−c a

]
·
[
a b
c d

]
= 1

ad−bc

[
a b
c d

]
·
[
d −b
−c a

]
=

[
1 0
0 1

]

10

(
1 3 1 0
0 1 0 1

)
→

(
1 0 1 −3
0 1 0 1

)
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Now, let’s look at a bigger example.

Example 9.5. Find the inverse of M =




1 1 −2
1 2 1
2 −1 1


 .

No matter the size of M , we always start by reducing the augmented matrix
(

M e1 e2
)
.




1 1 −2 1 0 0
1 2 1 0 1 0
2 −1 1 0 0 1


 →




1 1 −2 1 0 0
0 1 3 −1 1 0
0 −3 5 −2 0 1


 →




1 0 −5 2 −1 0
0 1 3 −1 1 0
0 0 14 −5 3 1




→




1 0 −5 2 −1 0
0 1 3 −1 1 0
0 0 1 −5/6 1/2 1/6


 →




1 0 0 3/14 1/14 5/14
0 1 0 1/14 −5/14 −3/14
0 0 1 −5/14 3/14 1/14


 .

Using the above understanding, we see that

M




3/14 1/14 5/14
1/14 −5/14 −3/14

−5/14 3/14 1/14


 =




1 0 0
0 1 0
0 0 1


 .

Thus, we know that the inverse is M−1 =




3/14 1/14 5/14
1/14 −5/14 −3/14

−5/14 3/14 1/14


 .

Theorem 9.1. Properties of Invertible Matrices

1. If A is invertible, then A−1 is invertible and (A−1)−1 =

2. If A is invertible, then AT is invertible and (AT )−1 =

3. If A and B are n× n invertible matrices, then A ·B is invertible and (AB)−1 =

Proof. (1) Notice A−1A = AA−1 = I so (A−1)−1 = A.
(2) By transpose properties, (A−1)TAT = AT (A−1)T = (A(A−1))T = IT = I.
(3) Using the associative property of matrix multiplication, (AB)(B−1A−1) = A(BB−1)A−1 =
A(I)A−1 = AA−1 = I and (B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B = B−1B = I.

.

Theorem 9.2. If A is an n× n invertible matrix, then for each b ∈ ℜn, the equation Ax = b has
the unique solution x = A−1b.

Proof. Suppose A is an n × n invertible matrix and let b ∈ Rn and consider A−1b ∈ Rn. Now
A(A−1b) = b so a solution does exist. We now want to show this solution is unique. To do this
we will let u be an arbitrary solution to Ax = b and show that u = A−1b. So if Au = b then
A−1Au = A−1b ⇒ u = AA−1b. Thus Ax = b has the unique solution x = A−1b.
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The Invertible Matrix Theorem:
Suppose A is a square n× n. The following statements are either all true or all false:

1. A is invertible

2. A has n pivot positions

3. The Nullspace of A is trivial (The equation Ax = 0 has only the trivial solution.)

4. The columns of A form a linearly independent set.

5. The columns of A span Rn

6. The linear transformation represented by A is injective.

7. The linear transformation represented by A is surjective.

8. AX = b has a unique solution

9. AT is an invertible matrix.

10. There is an n× n matrix C such that CA = I

11. There is an n× n matrix D such that AD = I

Proof: Omitted. Some of these properties we have already proved. Please see suggested textbook
if interested in some of the details.
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10 The Determinant of a Matrix

The determinant of a square matrix A measures the n dimensional volume of the parallelepiped that
is generated by the column vectors of A. In this section, we discuss how to calculate a determinant
of a matrix and discuss some information that we can obtain by finding the determinant. First,
note that this section is not a comprehensive discussion of the determinant of a matrix. There
are geometric interpretations that we will not discuss here. Instead this section will present the
computation and tough on why we would ever consider finding the determinant. At first, this
computation seems lengthy and maybe even more work than its worth. But, we will use the
determinant to help us decide the outcome when solving systems of equations or when solving
matrix equations. That is, it is often nice for us to know a hint about the solution before we begin
the journey through matrix reduction (especially if we have to do these by hand and if they are
big). With that, we begin by discussing the properties that we want the determinant of a matrix
to have. These properties are all related to matrix reduction steps.

The Properties of the Determinant

Let α be a scalar. We want the determinant of an n×nmatrix, A, to satisfy the following properties:

• det(αA) = αn det(A).

• det(AT ) = det(A).

• If B is obtained by performing the row operation, Rk = αrj+rk on A, then det(B) = det(A).

• If B is obtained by performing the row operation, Rk = αrk on A, then det(B) = α det(A).

• If B is obtained by performing the row operation, Rk = rj and Rj = rk on A, then det(B) =
−1 · det(A).

• If A is in echelon form, then det(A) is the product of the diagonal elements.

We can use these properties to find the determinant of a matrix by keeping track of the determinant
as we perform row operations on the matrix. Let us try an example. We will find the determinant

of A =




1 1 1
2 −1 3

−1 1 −2


 . Our goal is to reduce A to echelon form all the while keeping track of

how the determinant changes.




1 1 1
2 −1 3

−1 1 −2


 R2=−2r1+r2−→

R3=r1+r3




1 1 1
0 −3 1
0 2 −1


 R2=r2+r3−→




1 1 1
0 −1 0
0 2 −1




det(A) det(A) det(A)

R2=−r2−→
R3=2r2+r3




1 1 1
0 1 0
0 0 −1


 −→

R3=−r3




1 1 1
0 1 0
0 0 1




−det(A) det(A)

= .
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We will try one more example before giving another method for finding the determinant. We will

find the determinant of A =




2 2 2
1 0 1

−2 2 −4


 . Again, we will reduce A to echelon form all the

while keeping track of how the determinant changes.




2 2 2
1 0 1

−2 2 −4


 R1=

1
2
r1−→




1 1 1
1 0 1

−2 2 −4


 R2=−r1+r2−→

R3=2r1+r3




1 1 1
0 −1 0
0 4 −2




det(A) 1
2 det(A) 1

2 det(A)

R2=−r2−→
R3=4r2+r3




1 1 1
0 1 0
0 0 −2


 −→

R3=− 1
2
r3




1 1 1
0 1 0
0 0 1




−1
2 det(A) 1

4 detA

.

Clearly, there has to be another method because, well, I said that we would want to know the
determinant before going through all of those steps. Another method for finding the determinant
of a matrix is the method called cofactor expansion.
Now, if the matrix M is 2× 2, it is much easier to compute the determinant:

Determinant of a 2 by 2 Matrix:

Let M =

(
a b
c d

)
then the determinant is

Notation: detM is also denoted as |M |.

Example 10.1. What is the determinant of

[
5 4
1 3

]

(a) 4
(b) 11
(c) 15
(d) 19

If M is a bigger matrix, then there’s more to do here. Here, we write out the formula given by this
method.
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Definition 10.1. Co-factor Expansion Method to Compute and Define the Determinant:
Let A = (ai,j) be an n× n matrix and choose any j so that 1 ≤ j ≤ n, then
|A| = ∑n

i=1(−1)i+jai,j |Mi,j |, where Mi,j is the sub-matrix of A where the ith row and jth column
has been removed.

Note, we can also expand about a column so that we choose an i so that 1 ≤ i ≤ n, then
|A| = ∑n

i=j(−1)i+jai,j |Mi,j |, Notice that if n is large, this process is iterative until the sub-matrices
are 2× 2. Here are some examples showing what this formula looks like.

∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
=

Example 2: Determine |A| for A =




2 2 2
1 0 1

−2 2 −4


 .
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Example 10.2. Let A =




a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4


, then

|A| = a1,1

∣∣∣∣∣∣

a2,2 a2,3 a2,4
a3,2 a3,3 a3,4
a4,2 a4,3 a4,4

∣∣∣∣∣∣
−a1,2

∣∣∣∣∣∣

a2,1 a2,3 a2,4
a3,1 a3,3 a3,4
a4,1 a4,3 a4,4

∣∣∣∣∣∣
+a1,3

∣∣∣∣∣∣

a2,1 a2,2 a2,4
a3,1 a3,2 a3,4
a4,1 a4,2 a4,4

∣∣∣∣∣∣
−a1,4

∣∣∣∣∣∣

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
a4,1 a4,2 a4,3

∣∣∣∣∣∣
.

Example 10.3. What is the determinant of



5 1 0
1 3 2
0 −1 1


?

(a) 0
(b) 15
(c) 24
(d) 26

Example 10.4. What is the determinant of



5 2 −1
0 3 4
0 0 1


?

(a) 0
(b) 6
(c) 15
(d) 22

The determinant of a triangular matrix is

Example 10.5. What is the determinant of



5 0 0
0 3 0
0 0 1


?

(a) 0
(b) 9
(c) 15
(d) none of the above

The determinant of a diagonal matrix is
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Now we can add a few more lines to our Big Theorem:

10.1 The Invertible Matrix Theorem

Theorem 10.1. The Invertible Matrix Theorem Suppose A is a square n× n. The following
statements are either all true or all false:

1. A is invertible

2. A has n pivot positions

3. The Nullspace of A is trivial (The equation Ax = 0 has only the trivial solution.)

4. The columns of A form a linearly independent set.

5. The columns of A span Rn

6. The linear transformation represented by A is injective.

7. The linear transformation represented by A is surjective.

8. AX = b has a unique solution

9. AT is an invertible matrix.

10. There is an n× n matrix C such that CA = I

11. There is an n× n matrix D such that AD = I

12. detA ̸=

Proof: Omitted. Some of these properties we have already proved. Please see suggested textbook
if interested in some of the details.
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11 Eigenvalues and Eigenvectors

Recall, Linear algebra is basically the study of multivariate linear systems and transformations and,
in my opinion, is at its core trying to solve Two Fundamental Problems:

1. Solving Ax = b, and

2. Diagonalizing a matrix A (AKA Eigenvalue Problems).

The first problem relates to exploiting linear methods to solve complex and dynamical systems and
situations. Basically, it is using one of the best problem-solving techniques mathematicians use,
what I like to call the “Wouldn’t it be nice if...” approach. That is, real life is a mess and we often
have to deal with really complex functions (if we are even lucky enough to have a function at all!)
which are difficult to manage. So instead we use linear functions (lines and planes) to approximate
or model the complex, real-world situation, which is much easier.

The second problem relates to simplifying our system so that we can more easily solve or approxi-
mate systems. The fact that some systems don’t have solutions leads directly into the mathematical
field of Numerical Analysis and we will dive into some basic numerical analysis in this course. Be-
cause so many situations in life can be modeled linearly, Linear Algebra shows up in many topics
including (but not exhaustively) “Markov chains, graph theory, correlation coefficients, cryptology,
interpolation, long-term weather prediction, the Fibonacci sequence, difference equations, systems
of linear differential equations, network analysis, linear least squares, graph theory, Leslie popu-
lation models, the power method of approximating the dominant eigenvalue, linear programming,
computer graphics, coding theory, spectral decomposition, principal component analysis, discrete
and continuous dynamical systems, iterative solutions of linear systems, image processing, and
traffic flow.”1

11.1 Eigenvalue and Eigenvectors Motivation

This next section of the class is primarily focused on the second fundamental problem we like to
use Linear Algebra to solve. Before we begin, we first discuss some motivation for why we like and
seek to find eigenvalues, eigenvectors, and eigenbases.
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11.1.1 ICE 8: Motivation for Eigenvalues and Vectors

1. Compute the product

[
1 2
2 1

]
·
[
1
1

]

a)

[
1 2
2 1

]
b)

[
3
3

]
c)

[
3 3

]
d)

[
4
2

]
e) None of the above.

2. Compute the product

[
1 2
2 1

]2
·
[
1
1

]

a)

[
3
3

]
b)

[
6
6

]
c)

[
9
9

]
d)

[
12
12

]
e) None of the above.

3. Compute the product

[
1 2
2 1

]4
·
[
1
1

]

a)

[
27
27

]
b)

[
81
81

]
c)

[
243
243

]
d)

[
729
729

]
e) None of the above.

4. For any integer n, what will this product be?

[
1 2
2 1

]n
·
[
1
1

]

a)

[
3n
3n

]
b) 3n

[
1
1

]
c) n3

[
1
1

]
d) 3n

[
n
n

]
e)

[
3
3

]n
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Wouldn’t it be nice if...

5. In the figure below there are 12 different heat state evolution scenarios. The initial heat
states are in orange and their corresponding diffusions vary in time based on color from
orange (initial) to dark blue (final). Looking specifically at the diffusion behavior for each,
create groups that represent similar behavior. Briefly list the criteria you used to group them.
Circle 3 that seem to have the easiest, most predictable diffusion patterns.
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11.2 Eigenvalue and Eigenvectors Motivation Continued

In our motivating application example, we discovered that multiplying a matrix A multiple times
can often cause us to have very complex matrix. So when we want to discover how a state, like in
heat diffusion, changes after time, we want to find u(t+ n∆t) = Enu(t). Wouldn’t it be nice if we
had special vectors which had the property Eu = λu where λ is a constant/scalar? If this were the
case then u(t + n∆t) = Enu(t) = λnu(t). This will mean that our heat states will only change in
amplitude in the heat diffusion (cooling) on a rod. This means that when we apply the diffusion
operator to one of these heat states, we get a result that is a scalar multiple of the original heat
state. Mathematically, this means we want to find vectors v such that:

Ev = λv, (5)

for some scalar λ. In other words, these vectors, v, satisfy the matrix equation

(E − λI)v = 0. (6)

Notice this is a homogeneous equation so we know that this equation has a solution. This means
that either there is a unique solution (only the trivial solution) or infinitely many solutions. If we
begin with a zero heat state (all temperatures are the same everywhere along the rod) then the
diffusion is very boring (my opinion, I know) because nothing happens. It would be nice to find
a nonzero vector satisfying the matrix Equation (6) because it gets us closer to the possibility of
having a basis of these vectors. By the invertible matrix theorem, we know that this equation has
a nonzero solution as long det(E − λI) = . Recall, we are going to be very happy to
find these special vectors because they help us with predictive modeling (stay tuned for the next
few sections!)

11.3 Eigenvalue and Eigenvectors Definition

This property that the special vectors in a heat diffusion have is a very desirable property elsewhere.
So, in Linear Algebra, we give these vectors a name.

Definition 11.1. Let V be a vector space. Given a linear operator(transformation) L : V → V ,
with corresponding square matrix, and a nonzero vector v ∈ V . If Lv = λv for some scalar λ, then
we say v is an eigenvector of L with eigenvalue λ.

As with the heat states, we see that eigenvectors (with positive eigenvalues) of a linear operator
only change amplitude when the operator is applied to the vector. This makes repetitive applica-
tions of a linear operator to its eigenvalues very simple.

Note: Since every linear operator has an associate matrix, we will treat operators/transformations
L : V → V as a matrix for the rest of this section.

Process: To find the eigenvalues and eigenvectors of a matrix, we need only solve the equation
det(L− λI) = 0. That is, the scalars λ so that det(L− λI) = 0.

Definition 11.2. We call the equation det(L−λI) = 0. the characteristic equation and det(L−
λI) the characteristic polynomial of L.

129



Example 11.1. Find the eigenvalues of the matrix M =

(
5 −3
6 −4

)
.
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Example 11.2. Find the eigenvectors associated with the eigenvalues found in Ex 11.1 (-1 and 2)

of M =

(
5 −3
6 −4

)
.

Definition 11.3. Given an eigenvalue λ for matrix A, we sometimes call the nullspace of A− λI
the space corresponding to λ. A basis for an eigenspace is called an basis

Example 11.3. What is the eigenspace for λ = 2 for M =

(
5 −3
6 −4

)
from Ex 11.1?
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Example 11.4. Find the eigenvalues for M =



5 1 3
0 0 1
0 0 1


.

Theorem 11.1. The eigenvalues of a triangular or diagonal matrix are the entries of its main
diagonal.

Proof. We will prove this for a triangular matrix since a diagonal matrix is a triangular matrix.
Without loss of generality, assume A is an upper triangular matrix. Therefore

A− λI =




a11 − λ a12 a13 a14 a15 . . . a1n
0 a22 − λ a23 a24 . . . . . . a2n
0 0 a33 − λ a34 . . . . . . a3n

...
. . .

...
0 0 . . . 0 . . . 0 ann − λ



.

Since the determinant of a triangular matrix is the product of the diagonal entries. Solving det(A−
λI) = 0 gives the characteristic polynomial (a11 − λ)(a22 − λ) . . . (ann − λ) = 0 And thus the roots
of this equation (the eigenvalues) are a11, a22, . . . , ann.

Lemma 11.1. If 0 is an eigenvalue of A, then A is not invertible!

Proof. If 0 is an eigenvalue of A, then for λ = 0, 0 = det(A − λI) = det(A − 0) = det(A). If
det(A) = 0, then A is not invertible by The Invertible Matrix Theorem (Theorem 10.1).
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Example 11.5. Find an eigenbasis for the eigenspace associated with the eigenvalue 0 for

M =



5 1 3
0 0 1
0 0 1


.
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11.4 ICE 9: Eigenvalue and Eigenvectors

Two Sided.

1. Consider A =

[
1 1
2 2

]

(a) Find the eigenvalues for A.

(b) Find the eigenspaces associated to each eigenvalue.
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2. Consider A =

[
−2 4
3 −1

]
11

(a) Find the eigenvalues for A.

(b) Find the eigenspaces associated to each eigenvalue.

11Note if A =

[
−2 4
3 1

]
we have irrational evalues, which are ok, but messier.
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11.5 Eigenbasis

Recall, when we are searching for eigenvectors and eigenvalues of an n×n matrix M , we are really
considering the linear transformation T : Rn → Rn defined by T (v) = Mv. Then the eigenvectors
are vectors in the domain of T that are scaled (by the eigenvalue) when we apply the linear trans-
formation T to them. That is, v is an eigenvector with corresponding eigenvalue λ ∈ R if v ∈ Rn

and T (v) = λv.

So far, we have agreed that it would be nice if we could find a set of “simple vectors” that formed
a basis for the space of heat states.

That is, this will allow us to predict long term behavior of a system in a rather simple way. But we
can only do this if we have a basis consisting of eigenvectors. If we can find such a basis, we call
this basis a special name, we say it is an “eigenbasis”. That is, an eigenbasis is just a basis for Rn

made up of eigenvectors. We define an eigenbasis more formally here. In this section, we want to
explore when it is the case that we have an eigenbasis. Let’s remind ourselves why we want such a
basis with an example.
Application to the Heat Diffusion Operator
In the case of heat states, we recognize that if B = {v1, v2, . . . , vm} is a basis of these special vectors
so that Evi = λivi and u0 is our initial heat state, we can write u in coordinates according to B.
That is, there are scalars α1, α2, . . . αm so that

u0 = α1v1 + α2v2 + . . .+ αmvm.

Then, when we apply the diffusion operator to find the heat state, u1 a short time later, we get

u1 =Eu0 = E(α1v1 + α2v2 + . . .+ αmvm)

=α1Ev1 + α2Ev2 + . . .+ αmEvm

=α1λ1v1 + α2λ2v2 + . . .+ αmλmvm.

So, if we want to find uk for some time step k, far into the future, we get

uk =Eku0 = α1E
kv1 + α2E

kv2 + . . .+ αmEkvm

=α1λ
k
1v1 + α2λ

k
2v2 + . . .+ αmλk

mvm.

With this we can predict long term behavior of the diffusion. (You will get a chance to do this in
the exercises later.)
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Definition 11.4. Given an n × n matrix M . If M has n linearly independent eigenvectors,
v1, v2, . . . , vn then B = {v1, v2, . . . , vn} is called an eigenbasis of M for Rn.

First let’s recall the following lemma.

Lemma 11.2. If the dimension of V is n, then any set of n linear independent vectors of V is a
basis for V.

Proof. If the dimension of V is n, then a set of n linear independent vectors will be a minimum
spanning set for V and thus is a basis.

Goal: We want to construct an eigenbasis for M by finding a large enough set of linearly indepen-
dent eigenvectors. So that the number of eigenvectors is equal to the dimension of M.

Example 11.6. Determine if M =




2 0 0
0 3 1
0 0 3


 has an eigenbasis for R3.

So we want to find , linearly independent eigenvectors for M.

We begin by finding the and .
That is, we want to know for which nonzero vectors v and scalars λ does Mv = λv.
Eigenvalues =

λ1 = 2 In this case we are solving the matrix equation (M − 2I)v =




0 0 0
0 1 1
0 0 1







a
b
c


 = 0. Row

reducing gives us




0 0 0 0
0 1 1 0
0 0 1 0


 →




0 1 1 0
0 0 1 0
0 0 0 0


 →




0 1 0 0
0 0 1 0
0 0 0 0


 .
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λ2 = 3 Now, in this case we are solving the matrix equation (M−3I)v =




−1 0 0
0 0 1
0 0 0







a
b
c


 = 0.

Row reducing gives us




−1 0 0 0
0 0 1 0
0 0 0 0


 →




1 0 0 0
0 0 1 0
0 0 0 0


 .

To try to find an eigenbasis, take the union of each basis for each eigenspace. In this case our set
is:

So can we find an eigenbasis of M for R3?

Comment: Notice that in each example above, the set made by taking the union of each basis for
each eigenspace is a linearly independent set. This theorem justifies why this union will be linearly
independent.

Lemma 11.3. Let M be a matrix and let v be an eigenvector with eigenvalue λ. Then for any
scalar c, cv is an eigenvector with eigenvalue λ.

Proof. Given a matrix M with eigenvalue λ with eigenvector v, then any vector in the eigenspace
associated with λ will be an eigenvector for M. Thus any scalar multiple of v will also be in the
eigenspace and thus will be an eigenvector associated with λ.

Theorem 11.2. Let M be a matrix and let v1 and v2 be eigenvectors with eigenvalues λ1 and λ2

respectively. If λ1 ̸= λ2 then {v1, v2} is linearly independent.

Proof. Suppose v1 and v2 are nonzero eigenvectors with eigenvalues λ1 and λ2 respectively. Suppose
also that λ1 ̸= λ2. Then Mv1 = λ1v1 and Mv2 = λ2v2. By Lemma 11.3, αv1 and βv2 are
eigenvectors with eigenvalues λ1 and λ2 respectively. Let’s look at two cases 1.) λ1 = 0 and λ2 ̸= 0
(the case when λ2 = 0 and λ1 ̸= 0 is proved similarly so we won’t prove it) and 2.) λ1 ̸= 0 and
λ2 ̸= 0:

Case 1: If λ1 = 0 then by definition, v1 ∈ nullM . But since λ2 ̸= 0, v2 /∈ null(M).
Suppose that αv1 + βv2 = 0. Then M(αv1 + βv2) = 0.
But this means that βMv2 = 0. So β = 0. But then αv1 = 0 and so α = 0 and {v1, v2} is
linearly independent.
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Case 2: If λ1 ̸= 0 and λ2 ̸= 0 and αv1 + βv2 = 0.
Then M(αv1 + βv2) = 0 tells us that αλ1v1 = −βλ2v2.
Then αv1 = λ2

λ1
βv2. Thus, λ2

λ1
βv2 is an eigenvector with eigenvalue λ1 then, λ2

λ1
βv2 is an

eigenvector with eigenvalue λ2. So

M
λ2

λ1
βv2 = λ2βv2 and M

λ2

λ1
βv2 =

λ2
2

λ1
βv2.

So,

λ2βv2 =
λ2
2

λ1
βv2 and (λ1 − λ2)βv2 = 0.

Since, λ2 ̸= λ1 and v2 ̸= 0, we see that β = 0. Thus,

M(αv1 + βv2) = 0

implies αλ1v1 = 0. So, α = 0. Therefore {v1, v2} is linearly independent.
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12 Diagonalization

If we have a basis made up of eigenvectors, life is good. Well, that’s maybe a bit over reaching.
What we found was that if B = {v1, v2, . . . , vn} is an eigenbasis for Rn corresponding to the diffusion
matrix E then we can write any initial heat state vector v ∈ Rn as v = α1v1 + α2v2 + . . .+ αnvn.
Suppose these eigenvectors have eigenvalues λ1, λ2, . . . , λn, respectively. Then with this decom-
position into eigenvectors, we can find the heat state at any later time (say k time steps later)
by multiplying the initial heat state by Ek. This became an easy computation with the above
decomposition because it gives us, using the linearity of matrix multiplication,
Ekv = Ek(α1v1 + α2v2 + . . . + αnvn) = α1λ

k
1v1 + α2λ

k
2v2 + . . . + αnλ

k
nvn. We can then apply our

knowledge of limits from Calculus here to find the long term behavior. That is, the long term
behavior is lim

k→∞
α1λ

k
1v1+α2λ

k
2v2+ . . .+αnλ

k
nvn. Depending on the eigenvalues. We also discussed

how it would be nice to use a change of basis to transform E so that it acts like a diagonal matrix.
Recall diagonal matrices are easy to raise to higher powers.

For example if D =




a 0 0 ...
0 b 0 ...
0 0 c ...
0 0 0 ...
...

...
...

. . .



, Dk =

There is a formal method for this, called Diagonalization.

Definition 12.1. Matrices A and B are similar if there exists an invertible matrix P such that
A =

Definition 12.2. An n× n (square) matrix A is diagonalizable if there exists n× n matrices D
and P where D is diagonal and P is invertible such that A = .
That is, A is similar to a diagonal matrix.

Why is diagonalization so useful?
Suppose A is diagonalizable, that is, A = PDP−1. Calculate A3.
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Example 12.1. Suppose A = PDP−1 where D =

[
1 0
0 2

]
and P =

[
2 1
0 −1

]
. Calculate A3.

Theorem 12.1. An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. In fact, A = PDP−1, where D is a diagonal matrix, if and only if the columns of P
are n linearly independent eigenvectors of A and the diagonal entries of D are the eigenvalues of
A that correspond respectively to the eigenvectors of P.

Note: In other words, A is diagonalizable if and only if there are enough eigenvectors to form a
basis of Rn. If such a basis exists, we call it an eigenvector basis or eigenbasis.

Proof. It is helpful for notation to first notice that if P is any n×n matrix with columns v1, v2, ..., vn
and if D is a diagonal matrix with diagonal entries λ1, λ2, ..., λn, then

AP = A
[
v1 v2 . . . vn

]
=

[
Av1 Av2 . . . Avn

]
(7)

and

PD =
[
v1 v2 . . . vn

]
·




λ1 0 0 . . . 0
0 λ2 0 . . . 0

0 0
. . . 0 0

0 0 . . . 0 λn


 =

[
λ1v1 λ2v2 . . . λnvn

]
(8)

First suppose A is diagonalizable. So there exists invertible P and diagonal D such that A =
PDP−1 ⇒ AP = PD Thus by 7 and 8,

[
Av1 Av2 . . . Avn

]
=

[
λ1v1 λ2v2 . . . λnvn

]

Setting the columns equal to each other gives us that Avi = λivi for i = 1, ..., n. Since P is in-
vertible, {v1, v2, ..., vn} are linearly independent and non-zero by The Invertible Matrix Theorem
(Thm 10.1). Furthermore, λ1, λ2, ..., λn are eigenvalues with associated eigenvectors v1, v2, ..., vn.
Therefore A has n linearly independent eigenvectors (and thus has an eigenbasis -woo!).

On the other hand, suppose A has n linearly independent eigenvectors, v1, v2, ..., vn. Define

P :=
[
v1 v2 . . . vn

]
.
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And put

D :=




λ1 0 0 . . . 0
0 λ2 0 . . . 0

0 0
. . . 0 0

0 0 . . . 0 λn


 .

Then
AP =

[
Av1 Av2 . . . Avn

]

and
PD =

[
λ1v1 λ2v2 . . . λnvn

]
.

By definition of eigenvalues and eigenvectors for A, AP = DP and since the columns of P are the
linearly independent eigenvectors, by the Invertible Matrix Theorem (Thm 10.1), P is invertible.
Therefore A = PDP−1 and thus is diagonalizable.

Process to Diagonalize a Matrix, A, If Possible

1. Find the eigenvalues of the matrix.
Solve det(A− λI) = 0. That is, solve |A− λI| = 0.

2. Find a spanning set of linearly independent eigenvectors of the matrix.
For each e-value, λi, find a basis for Null(A− λiI).
Take the union of all bases for all of the eigenspaces.

3. Determine if you have enough eigenvectors from Step 2, that you can span Rn.
Note you can only proceed if there are the same number of eigenvectors as the dimension of
A (n) if there are not enough eigenvectors, the matrix is NOT diagonalizable).

4. Construct P from the eigenvectors from Step 2.

5. Construct D from the corresponding eigenvalues (order matters!).

6. Check to make sure P and D work by checking if A = PDP−1, but it is easier to
just check if AP =
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Example 12.2. Diagonalize M =

(
5 −3
6 −4

)
if possible. Note in Ex. 11.3, we found that M has

eigenvalues 2 and -1 with associated eigenspaces spanned by E2 =span{
[
1
1

]
} and E−1 =span{

[
1
2

]
}.

Example 12.3. Diagonalize M =




2 0 0
0 3 1
0 0 3


 from Example 11.6 if possible.
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Example 12.4. Diagonalize A =



4 0 −2
2 5 4
0 0 5


, if possible. One eigenvalue is 4 and Eva has found

that the E-space associated with λ = 4 to be E4 =span{



−1
2
0


} 12

12null(A− 4I) = null(



0 0 −1
2 1 4
0 0 1


) → we solve



0 0 −1 : 0
2 1 4 : 0
0 0 1 : 0


 →



1 1

2 0 : 0
0 0 1 : 0
0 0 0 : 0




So the Eigenspace associated with 4 is = {



x
y
z


 |x = −y

2 , z = 0} = {



−y

2
y
0


 |y ∈ R} =span {




−1
2
1
0


} =span

{



−1
2
0


}
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12.1 ICE 10 -Diagonalization

1. Eva and Archer want to Diagonalize a 2 by 2 matrix A. Dr. Harsy has computed the follow-

ing eigenvalues and associated eigenvectors for A: λ1 = 3 with associated eigenvector {
[
1
1

]
}

and λ2 = 16 with associated eigenvector

[
1
−1

]
. Which of the following would work for the

diagonalization of A:

a) P =

[
1 1
1 −1

]
, D =

[
16 0
0 3

]

b) P =

[
1 1
−1 1

]
, D =

[
16 0
0 3

]

c) P =

[
1 1
1 −1

]
, D =

[
3 0
0 16

]

d) P =

[
1 1
−1 1

]
, D =

[
3 0
0 16

]

e) More than one of the above.

2. Now Eva and Archer want to Diagonalize a 3 by 3 matrix A. Dr. Harsy has computed the
following eigenvalues and associated eigenvectors for A: λ1 = 3 with associated eigenbasis

{



1
1
0


} and λ2 = 16 with associated eigenbasis {




0
1
−1


 ,



1
1
1


}. Which of the following would

work for the diagonalization of A:

a) P =



1 1 0
1 1 1
0 1 −1


, D =



3 0 0
0 3 0
0 0 16




b) P =



1 1 0
1 1 1
0 1 −1


, D =



3 0 0
0 3 0
0 0 16




c) P =



1 1 0
1 1 1
0 1 −1


, D =



16 0 0
0 16 0
0 0 3




d) P =



1 1 0
1 1 1
0 1 −1


, D =



3 0 0
0 16 0
0 0 16




e) More than one of the above.
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3. Now Eva and Archer want to Diagonalize a 3 by 3 matrix A. Dr. Harsy has computed the
following eigenvalues and associated eigenvectors for A: λ1 = 3 with associated eigenbasis

{



1
1
0


} and λ2 = 16 with associated eigenbasis {




0
1
−1


}. Which of the following would work

for the diagonalization of A:

a) P =



1 1 0
1 1 1
0 1 −1


, D =



3 0 0
0 16 0
0 0 16




b) P =



1 1 0
1 1 1
0 1 −1


, D =



3 0 0
0 3 0
0 0 16




c) P =



1 1 0
1 1 1
0 1 −1


, D =



16 0 0
0 16 0
0 0 3




d) More than one of the above.

e) A is not diagonalizable.

4. Suppose A = PDP−1, write an expression for A8 involving P and D.
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13 Markov Chains

It turns out, we already kinda know about Markov Chains 13

In our Heat Equation Discussion about the motivation for eigenvectors, we discussed how we could
easily predict long term behavior of our heat state by calculating Ekv0, where E is our diffusion
matrix and v0 is our initial heat state. This can get really difficult to calculate, especially if E is a
large matrix. On the other hand, if we had a basis made up of eigenvectors, life is easier. When
we have such a basis, our matrix E is diagonalizable. That is we can write E = PDP−1. Then
Ekv0 = PDkP−1v0. We can then also apply our knowledge of limits from Calculus here to find the
long term behavior. That is, the long term behavior is

lim
k→∞

Ekv0 = lim
k→∞

PDkP−1v0 =

lim
k→∞

α1E
kv1 + α2E

kv2 + . . .+ αmEkvm = lim
k→∞

α1λ
k
1v1 + α2λ

k
2v2 + . . .+ αmλk

mvm

We see that this limit really depends on the size of the eigenvalues.

We can see how this equation allows us to find different heat states for a given rod. That is,
u2 = Eu1, u3 = Eu2 = E2u1, u4 = Eu3 = E3u1, etc. This process of transitioning between “states”
of a system over discrete time steps has many applications including:

• Movement of people between regions

• States of weather

• Movement between positions on a board games

• Your score in betting games like Blackjack

• Movements between webpages

• Positions of the runners on base and the number of outs in baseball

• Population changes of an ecosystem

• Subscription changes for amenities

Example 13.1. We will divide the class into 3 groups, A,B, & C.

• 1/3 of group A goes to group B and 1/3 of group A goes to group C.

• 1/4 of group B goes to group A and 1/4 of group B goes to C.

• 1/2 of group C goes to group B.

What happens after a few state transitions?

13Some Examples from When Life is Linear and http://www.slideshare.net/leingang/

lesson-11-markov-chains
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13.1 Introduction to Markov Chains

Definition 13.1. A Markov chain or Markov Process is a process in which the probability of the
system being in a particular state at a given time period depends only on its state at previous time period.
Note: There is NO PAST in a Markov Chain, just the here and now!

Common questions about a Markov Process:

• What is the long term behavior of the process?

• Is there a long-term stability to the process?

• What is the probability of transitions from state to state over multiple observations

• Can we hit an equilibrium state?

Example 13.2. Suppose on any given class day you wake up and decide whether to come to class.
If you went to class the time before, you’re 70% likely to go today, and if you skipped the last class,
you’re 80% likely to go today. Some questions you may ask include:
If I go to class on Tuesday, how likely am I to go to class on Thursday? Next Thursday?
Assuming the class is infinitely long (oh my!), what portion of the class will I approximately attend?

To answer these questions, we first will set up a Transition Matrix or Stochastic Matrix.

Definition 13.2. Suppose a system has n possible states. The Transition or Stochastic Matrix
for this system is given by T = (tij) where for each i and j, tij is the probability of switching from
state j to state i.

What is our transition matrix for Ex 13.2: Skipping Class?
If you went to class the time before, you’re 70% likely to go today, and if you skipped the last class,
you’re 80% likely to go today.

What is our transition matrix for Ex. 13.1: Markov Dance?
Recall, 1/3 of group A goes to group B and 1/3 of group A goes to group C. 1/4 of group B goes
to group A and 1/4 of group B goes to C. 1/2 of group C goes to group B.
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What properties do these matrices have?

Properties of Stochastic Matrices:

• All entries are

• The columns add up to

Example 13.3. Is our Diffusion Matrix from our Heat Lab a transition matrix? Recall 0 ≤ δ < 1

E =




1− 2δ δ 0 0 . . .
δ 1− 2δ δ 0 . . .
0 δ 1− 2δ δ
...

...
...

. . .




Definition 13.3. A Transition Matrix (for a corresponding Markov chain) is called regular if for
some k ≥ 1, T k has all strictly positive entries. Note that this means there is a positive probability
of eventually moving from every state to every state.

Example: T =

[
1 0
0 1

]
is a matrix but not .

Is A a Transition Matrix? Is it Regular?

A =



.5 .5 .5
.5 0 .5
0 .5 0


, A2 =



.5 .5 .5
.25 .5 .25
.25 0 .25


, A3 =




.5 .5 .5
.375 .25 .375
.125 .25 .125


.

Definition 13.4. The state vector for a Markov chain with n possible state at a given time step

k is denoted xk =




pk1
pk2
pk3
...
pkn




where pki is the probability that the system is in state i at time-step k. These vectors are also called
vectors since they add up to 1 and are nonnegative.

In order to find our state vectors for our two examples, we need more information.
For our skipping class example, we need to decide what is our initial vector state. What would be
a good choice for this?
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Find the initial state for our Markov Activity if we started with 20 students in A, 10 in B, and 10
in C.

Theorem 13.1. If T is the transition matrix for a Markov chain, the then the state vector for the
(k + 1)th time step, denoted , can be determined from by

Proof: Omitted. See supplementary textbook.

Example 13.4. Suppose you go to class on Tuesday, what’s the probability that you will go to the
next class? What about the class 3 days from now?

Connection: Remember, if we want to calculate T k for large k’s (Lay’s Linear Algebra Book says
for k > 30), we may want to compute each xk from the previous state rather than calculate T k.
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Even better, it would be nice if we can T!

13.2 Steady State Vectors

As we mentioned before, it may be useful to determine the end behavior of a system. In other
words, we want to determine lim

k→∞
T kx0.

Theorem 13.2. If T is an n× n regular stochastic matrix, the T has a unique vector u. That is
if x0 is the initial state, the lim

k→∞
T kx0 = . That is, our Markov chain of states {xi}

converges to u.

Proof: Omitted. See supplementary textbook.

Definition 13.5. The vector u described above is called a steady-state vector.

What does this mean?
xi+1 = Txi so for large i...

Theorem 13.3. The steady-state vector u is the unique probability vector satisfying the matrix
equation:

That is, u is an for the associated = !!

Proof: Omitted. See supplementary textbook.

So how can we find a steady-state vector?

Example 13.5. Find the steady-state vector for the Skipping Ex. 13.2. Recall, T =

[
0.7 0.8
0.3 0.2

]
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13.3 Application to Google’s Page Rank Model

There are billions of web pages in the interwebs. How can we possibly determine the quality of a
page? Google’s Page Rank Model was developed by Google founders Larry Page and Sergey Brin
in order to solve this problem. They determined the popularity of a web page by modeling Internet
activity. That is, the frequency of time spent of time spent on a page yields that page’s PageRank.
So what is this model? Does Google have spies (probably cats) tracking your every move on the
Internet?

Like every model, we start with some assumptions.
PageRank Model Assumptions:

• Google treats everyone as a random surfer and assumes you will randomly choose links to
follow.

• If there are links on the page you currently are on:

– There is a 85% chance you will follow a hyperlink on a page that you are currently on.

– There is a 15% chance you will jump to any web page in the network (with uniform
probability),

• If there are no links on the web page you are currently on (this page is called a “dangling
node”), you are equally likely to jump anywhere on the Internet.
*note you can go right back to your current page which is necessary so we can have a regular
transition matrix*

Example system (on your HW!):

Which page is the dangling node?

2 4

1 3

5

6
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Example 13.6. Below is a directed graph representing six web pages representing links to other
pages. Create the Transition Matrix for this Markov process.

4 1

3 2

b) Notice T is regular, so we can find a unique steady state vector. Let’s find this vector.
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13.4 Ice 11 -Markov Chains

1. A small, isolated town has two grocery stores, Archer’s Market and Eva’s Shoppe. While
some customers are completely loyal to one store or another, there is another group of cus-
tomers who change their shopping habits each month. Of the shoppers who favor Archer’s
Market one month, only 70% will still shop there the following month, while Eva’s Shoppe
retains 78% of its customer base each month. Everyone in the town shops at one of the two
stores, and no one from out of town ever shops at either store. If Archer’s Market currently
has 2500 customers and Eva’s Shoppe has 1900 customers, how many customers will Archer’s
Market have next month?

(a) 418
(b) 1750
(c) 2168
(d) 3080

2. Referring to the scenario in the previous question, what will the product[
0.70 0.22
0.30 0.78

]
·
[
2500
1900

]
tell us?

(a) This product will tell us the percentage of customers that will switch from one store to
the other store next month.

(b) This product will tell us the number of customers who will shop at each store next month.

(c) This product will tell us the total number of customers who switched stores this month.

(d) This product doesn’t have any meaning.
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3. Continuing the scenario from the previous questions, what does the (2, 1)-entry of the matrix[
0.70 0.22
0.30 0.78

]3
represent?

(a) This represents the probability that a customer will switch from Archer’s Market to Eva’s
Shoppe between months 3 and 4.
(b) This represents the probability that a customer will switch from Eva’s Shoppe to Archer’s
Market between months 3 and 4.
(c) This represents the probability that a customer who currently shops at Archer’s Market
will be shopping at Eva’s Shoppe three months from now.
(d) This represents the probability that a customer who currently shops at Eva’s Shoppe will
be shopping at Archer’s Market three months from now.

4. Suppose we found that the steady-state (equilibrium) vector for this shop example is

[
11
26
15
26

]
.

What does the steady-state vector mean in the context of Archer’s Market and Eva’s Shoppe?

(a) In the long-run, the probability of staying at Archer’s Market will be 11/26 and the
probability of switching to Eva’s Shoppe will be 15/26.
(b) In the long-run, the probability of shopping at Archer’s Market will be 11/26 and the
probability of shopping at Eva’s Shoppe will be 15/26.
(c) In the long-run, Archer’s Market will approach 11/26 of the market share, while Eva’s
Shoppe will approach 15/26 of the market share.
(d) I like cats!

5. Verify that

[
11
26
15
26

]
is a steady state vector for this Markov Process.
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14 Orthogonality

So far, we have talked about how lovely life is when we have a matrix (often representing a dynamical
system) that is diagonalizable. Unfortunately, we don’t always have this property. Sometimes we
have matrices that don’t have a complete and spanning eigenbasis and often we don’t have square
matrices. Luckily we have a way to deal with these less than ideal situations. This requires us to
look at the matrix ATA (which will be square) and create something called an orthogonal basis.
So first let’s talk about orthogonal vectors. Note, we are talking about this mainly because we will
discuss a process which will allow us to find an orthogonal basis.

14.1 Orthogonal Vectors

Recall, when we discussed the Massey Method for sports ranking, we defined the following two
terms:

Definition 14.1. The inner product or dot product between two vectors u,v ∈ Rn, denoted
u · v = uT · v = vT · u = u1 · v1 + u2 · v2 + u3 · v3 + ...+ un · vn

Definition 14.2. The length or norm of a vector v∈ Rn is denoted ||v|| =
√
v21 + v22 + ...v2n

We now have a few more definitions which are necessary for

Definition 14.3. Vectors u and v∈ Rn are orthogonal if u · v =

Definition 14.4. Given a set of vectors S = {u1, u2, u3, ..., um}, We say S is an orthogonal set if
ui · uj = 0 for every i, j in the set.

Example 14.1. a) Show that S = {



−2
1
−1


 ,




1
−1
−3


 ,




4
7
−1


} is an orthogonal set.

Solution: We must check each of these 3 vectors pairwise which means we have 3 dot products to
check.
u1 · u2 = (−2)(1) + (1)(−1) + (−1)(−3) = −2− 1 + 3 = 0.
u2 · u3 = (1)(4) + (−1)(7) + (−3)(−1) = −4− 7 + 3 = 0.
u1 · u3 = (−2)(4) + (1)(−7) + (−1)(−1) = −8 + 7 + 1 = 0.

b) What if we add v =



0
2
2


?

Solution: We need to check the dot product of this new vector with each of the 3 vectors in S.
u1 · v = (−2)(0) + (1)(2) + (−1)(2) = 0 + 2− 2 = 0.
u2 · v = (1)(0) + (−1)(2) + (−3)(2) = 0− 2− 6 = 0− 8 ̸= 0.

Since u2 · v ̸= 0, we know that S = {



−2
1
−1


 ,




1
−1
−3


 ,




4
7
−1


 ,



0
2
2


} is not an orthogonal set and we

do not need to check u3 · v.
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Example 14.2. Which of the following sets of vectors is not an orthogonal set?

(a) (1, 1, 1), (1, 0,-1)
(b) (2, 3), (-6, 4)
(c) (3, 0, 0, 2), (0, 1, 0, 1)
(d) (0, 2, 0), (-1, 0, 3)
(e) (cos θ, sin θ), (sin θ,− cos θ)

Theorem 14.1. Suppose u and v∈ Rn, then u · v = 0 if and only if ||u+ v||2 = ||u||2 + ||v||2.

Proof. Let u and v be orthogonal vectors, so by definition u · v = 0. Then ||u+ v||2 = ||u||2 +2u ·
v + ||v||2= ||u||2 + 0 + ||v||2.

Let’s verify this theorem for



−2
1
−1


 and




1
−1
−3




(Recall, we showed that these two matrices were orthogonal in Ex 14.1.)

u+ v =



−1
0
−4


 ,

||u+ v||2 = (
√

(−1)2 + 02 + (−4)2)2 =
√
17

2
= 17

||u||2 =
√
22 + 12 + 12

2
= 6 and ||v||2 =

√
12 + 12 + 32

2
= 11

So ||u||2 + ||v||2 = 6 + 11 + 17

Note: In general, ||u+ v||2 ̸= ||u||2 + ||v||2.

14.2 Orthogonal Spaces

Definition 14.5. Let V be a vector space. We say a vector u is orthogonal to V (the whole space
of V) if u · v⃗ = 0 for every vector v ∈ V .

Definition 14.6. The set of all such vectors u that are orthogonal to V is called the orthogonal
complement of V and is denoted by V ⊥.

Note: V ⊥ is a vector space. You could check the closure property (if v,u ∈ V ⊥, then αv ∈ V ⊥

and v + u ∈ V ⊥).
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Theorem 14.2. Let B = {v1, v2, ...vn} be a basis for V then u ∈ V ⊥ (that is, u is orthogonal to
every vector in V) if and only if u · vi = 0 for all vi ∈ B.

Heuristic Proof: If a vector is orthogonal to all of the “building blocks” (basis vectors), then it is
orthogonal to everything you can build/span with those vectors. Feel free to look at our suggested
textbook for more details.

Example 14.3. Suppose V =span{




1
1
0
2


 ,




1
1
1
−1


 ,




2
0
1
1


}. How can we find a basis for V ⊥?

Solution: Let v1 =




1
1
0
2


 ,v2 =




1
1
1
−1


 ,v3 =




2
0
1
1


. We want to find a linearly independent

spanning set for the set of all vectors which are orthogonal to V . We don’t want to check every

vector individually, so instead we will find all vectors u =




u1
u2
u3
u4


 such that

u · v1 = 0 ⇒ u1(1) + u2(1) + u3(0) + u4(2) = 0 (9)

u · v2 = 0 ⇒ u1(1) + u2(1) + u3(1) + u4(−1) = 0 (10)

u · v3 = 0 ⇒ u1(2) + u2(0) + u3(1) + u4(1) = 0 (11)

(12)

We can solve this system of equations by setting up the augmented matrix:



1 1 0 2 0
1 1 1 −1 0
2 0 1 1 0


.

Note: This system is just
(
AT 0

)
where A =

[
v1 v2 v3

]
=




1 1 2
1 1 0
0 1 1
2 −1 1


.

Solving this system gives us:



1 0 0 2 0
0 1 0 0 0
0 0 1 3 0


 which gives us the solution set

u1 = −2u4, u2 = 0, u3 = −3u4, u4 = u4.

Thus V ⊥ =span{




−2
0
−3
1


}. Since this vectors space is spanned by 1 vector, it is automatically linearly

independent and thus is a basis.
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Example 14.4. Suppose V =span{



−2
1
−1


 ,




1
−1
−3


 ,




4
7
−1


}. Find a basis for V ⊥.

Solution: We can solve this by setting up the augmented matrix:



−2 1 −1 0
1 −1 −3 0
4 7 −1 0


 Row re-

ducing gets us



1 0 0 0
0 1 0 0
0 0 1 0


 which gives the solution u1 = 0, u2 = 0, u3 = 0 and thus V ⊥ = {0}.

14.3 Orthogonal Bases

Theorem 14.3. A set of nonzero orthogonal vectors is a linearly independent set of vectors.

Proof. Suppose {u1,u2, ...,un} is a set up nonzero orthogonal vectors. If 0 = a1u1 + a2u2 + ...+
anun, then dotting both sides with u1 gives us
0 = 0 · u1 = a1u1 · u1 + a2u2 · u1 + ... + anun · u1. Since u1 is orthogonal to ui for i = 2, ..., n
ui · u1 = 0 for i = 2, ..., n. Thus, 0 = a1u1 · u1 + 0 + ... + 0. Since u1 ̸= 0, the only solution
to this equation is if a1. We can continue to do this same method for ui for i = 2, ..., n to show
a1 = a2 = ... = an = 0. Therefore our set is linearly independent.

Definition 14.7. A basis made up of orthogonal vectors is called an orthogonal basis.

Why is this type of basis useful? Orthogonal sets are automatically linearly independent and
also because we will have a nice way to write any arbitrary vector as a linear combination of our
orthogonal basis. Orthogonal bases are also very stable.

Definition 14.8. A set of vectors {v1, v2, v3, ..., vn} is orthonormal if the set is orthogonal and
||vi|| = 1 for i = 1, ..n.

Normalizing Process: Given an orthogonal set {v1, v2, v3, ..., vn}, we can normalize these vectors
by dividing each vector by its norm.

Theorem 14.4. Suppose V has an orthogonal basis {v1,v2, ...,vn}, then any vector, u ∈ V can
be written as u = a1v1 + a2v2 + ...+ anvn where

ai =
vi · u
||vi||2

=
vi · u
vi · vi

Proof. Let u ∈ V and suppose V has an orthogonal basis {v1,v2, ...,vn}. Then ∃a1, a2, ..., an such
that u = a1v1 + a2v2 + ... + anvn. Using a method similar to Thm 14.3, dotting both sides by

nonzero v1 gives us u · v1 = a1v1 · v1. Since v1 · v1 ̸= 0, we can solve for a1. Thus a1 =
v1 · u
v1 · v1

.

Similarly we can solve for ai for i = 2, .., n and determine that ai =
vi · u
vi · vi

.
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Theorem 14.5. Given a subspace W ⊆ V , V = W +W⊥. This means any v ∈ V can be written
as v = w +w⊥, where w ∈ W, w⊥ ∈ W⊥.

Note: Theorem 14.5 makes our answer in Ex 14.4 make sense since these vectors are from Ex 14.1
and we already know they are orthogonal in R3. Thus R3 = V + V ⊥. Since V is 3 dimensional as
is R3, V ⊥ must be the trivial vector space.

Proof. Let V be a vector space with W ⊆ V . We will first show that W ∩ W⊥ = {0}: Suppose
there is a vector u ∈ W and W⊥, then u · u = 0 which means u = 0.
Next we show that any v ∈ V can be written as v = w + w⊥, where w ∈ W,w⊥ ∈ W⊥. Let
{o1, o2, ..., on} be an orthonormal basis for W. Let v ∈ V,w ∈ W . By Theorem 14.4, we can write
w = (v·o1)o1+(v·o2)o2+...+(v·on)on. Let u = v−w. We then check that u = v−w ∈ W⊥ We can
do this by checking that v−w is orthogonal to our orthonormal basis for W. Indeed since oi ·oj = 0
for any i ̸= j and oi ·oi = 1. o1 · (v−w) = o1 ·v−o1 ·v ·o1)o1−o1 · (v ·o2)o2− ...−o1 · (v ·on)on =
o1 · v − o1 · (v · o1)o1 = v − v We can similarly check the other dot products to show u ∈ W⊥.

Example 14.5. 14 Consider the set from Example 14.1: {



−2
1
−1


 ,




1
−1
−3


 ,




4
7
−1


}.

a) How do we know this is a basis for R3?

Solution: We have already shown that this is an orthogonal set of 3 vectors which means by The-
orem 14.3, they are linearly independent. Since R3 is 3 dimensional, we know this gives us a basis
for R3.

b) Write u =




3
−1
5


 as a linear combination of this basis.

Solution:

One way to do this is to set u =




3
−1
5


 = α1



−2
1
−1


 + α2




1
−1
−3


 + α3




4
7
−1


 and solve this system

for α1, α2, α3. But because we have an orthogonal basis we can also use Theorem 14.4 which gives
an algorithm to solve for α1, α2, α3 (which is often less prone to error!).
That is,

α1 =
u · v1

v1 · v1
(13)

α2 =
u · v2

v2 · v2
(14)

α1 =
u · v3

v3 · v3
(15)

14Ex from Holt’s Text
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Thus α1 =
u · v1

v1 · v1
=

3(−2) + (−1)(1) + 5(−1)

(−2)2 + 12 + (−1)2
=

−12

6
= −2.

Similarly, α2 =
−11
11 = −1 and α3 =

0
66 = 0.

So u =




3
−1
5


 = −2



−2
1
−1


− 1




1
−1
−3


+ 0




4
7
−1


.
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14.4 Projections

In this section, we will consider a particular type of linear transformation, a projection. Before
we generalize this concept to subspaces, lets recall how we defined projections in Calculus III or
Physics.

Definition 14.9. Let u,v ∈ Rn, with v ̸= 0. The projection of u onto v is given by projvu =
u · v
||v||2v = (

u · v
v · v )v.

Note: This may remind you of the coefficients
from our previous section which allowed us to
write any vector as a linear combination of an
orthogonal basis.

We would like to generalize this for a subspace. Typically, we use the notation πV to denote the
linear transformation that projects vectors to a space V . Let’s first start with an example in R3 to
understand the idea.

Example 14.6. Suppose we have a vector u ∈ R3 and we want to project u onto another vector
v ∈ {(x, y, 0)|x, y ∈ R} (the x-y plane). In reality, we are projecting onto the line that is parallel
to v: L = {αv : α ∈ R}. That is, we want to apply the transformation πL : R3 → L. Then we
are looking for the vector projv(u) shown in the figure on the left below. Notationally, we write
πL(u) = projv(u).

Now, suppose we want to project u onto the vector space spanned by two vectors, say V =
span {(1, 1, 1), (1, 0, 0)}. Then, we want to apply πV : R3 → V to get projV (u) shown in the
figure on the right in the figure above.

In terms of the Linear Algebra language that we have been using, to find the projection of a vector u
onto a space V = span {v1, v2, . . . , vn}, we first find the part (or component) of u that is orthogonal
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to the basis elements of V (thus, orthogonal to all vectors in V ). We call this component u⊥.
Then, the projection, projV (u) is the vector that is left over after we subtract the orthogonal part:
projV (u) = u− u⊥.

Definition 14.10. Let V be a nontrivial subspace with an orthogonal basis {v1, v2, ...vn} then the

projection of u onto V is given by projV (u) =
u · v1
||v1||2

v1 +
u · v2
||v2||2

v2 + ...+
u · vn
||v1n||2

vn.

Note that this is just writing u as a linear combination of the orthogonal basis of V. See Previous
Notes.

Theoretical Note: projV (u) does not depend on the choice of orthogonal basis for V.

14.5 The Gram-Schmidt Process for finding an Orthogonal Basis

Now we will discuss a method for finding an orthogonal basis for an arbitrary Vector Space.

Gram-Schmidt Process: Given a basis {b1, b2, ...bn} for a vector space V, we can create an or-
thogonal basis for V given by {v1, v2, ...vn} by the following process:
v1 = b1

v2 = b2 − projv2b2

v3 = b3 − projv1b3 − projv2b3

v4 = b4 − projv1b4 − projv2b4 − projv3b4
...
vn = bn − projv1bn − projv2bn − projv3bn − · · · − projvn−1

bn

Gram-Schmidt Process -Alternate Representation:
v1 = b1

v2 = b2 −
b2 · v1
v1 · v1

v1

v3 = b3 −
b3 · v1
v1 · v1

v1 −
b3 · v2
v2 · v2

v2

v4 = b4 −
b4 · v1
v1 · v1

v1 −
b4 · v2
v2 · v2

v2 −
b4 · v3
v3 · v3

v3

...

vn = bn − bn · v1
v1 · v1

v1 −
bn · v2
v2 · v2

v2 −
bn · v3
v3 · v3

v3 − · · · − bn · vn−1

vn−1 · vn−1
vn−1
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Computational Comment: The Gram-Schmidt process can suffer from significant round-off
error. As we compute the orthogonal vectors, some dot vi · vj produces may not be close to
zero when |i − j| is large. This will cause a loss of orthogonality. There is a modified version of
Gram-Schmidt which requires more operations but is more numerically stable. Givens Rotations
or Householder Reflections are two such methods, but they are beyond the scope of this course.

Example 14.7. Find an orthogonal basis for V =span {



−1
0
1


 ,



3
4
1


 ,



4
1
6


}

Note Eva has found v1 · v1 = 2,v2 · v2 = 24,b2 · v1 = −2,b3 · v1 = 2,b3 · v2 = 24.
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Recall: A set of vectors {v1, v2, v3, ..., vn} is orthonormal if the set is orthogonal and ||vi|| = 1
for i = 1, ..n. and given an orthogonal set {v1, v2, v3, ..., vn}, we can normalize these vectors by
dividing each vector by its norm.

Note: When completing the Gram-Schmidt Process by hand, it is easier to normalize each orthog-
onal vector as you go!

Octave/MatLab: Matlab has a build in function that will orthogonalize the columns of a basis
for V. Create a matrix A of its basis elements. Then use [Q,R] = qr(A). Q gives you a matrix
with orthonormal columns. You should know how to do this process by hand though.

Example 14.8. Normalize your orthogonal basis from Ex 14.7: {



−1
0
1


 ,



2
4
2


 ,




3
−3
3


}

Eva has given us the norms of the vectors:
||v1|| =

√
v1 · v1 =

√
(−1)2 + 02 + 12 =

√
2,

||v2|| =
√
22 + 42 + 22 = 2

√
6,

||v3|| =
√
92 + 92 + 92 = 3

√
3.

Definition 14.11. A is an orthogonal matrix if its columns create an orthonormal set.

Theorem 14.6. If A is an n× n orthogonal matrix, then A−1 = AT .

You can show this on your own by showing that A−1 = AT for A =




−1√
2

1√
6

1√
3

0 2√
6

−1√
3

1√
2

1√
6

1√
3
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Proof. (of Theorem 14.6) Let A = aij be an n× n orthogonal matrix, Then AT = aji. Then

AAT =




a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

an1 an2 an3 . . . ann


 ·




a21 a21 a31 . . . an1
a12 a22 a32 . . . an2
...

...
...

. . .
...

a1n a2n a3n . . . ann


 =




a11 · a11 a12 · a21 a13 · a31 . . . a1n · an1
a21 · a12 a22 · a22 a23 · a32 . . . a2n · an2

...
...

...
. . .

...
an1 · a1n an2 · a2n an3 · a3n . . . ann · ann




Since the columns are orthogonal and normal, aij · aji = 0 for i ̸= j and aij · ·aji = 1 for i = j.
Thus AAT = I. Similarly we can show that ATA = I. Therefore A−1 = AT .

14.6 Column Rank

Definition 14.12. If all of the columns of a matrix A are linearly independent (are a basis for
ran(A)), we say A has full column rank.

Example 14.9. A =




1 2 1 0
0 1 0 1
0 0 1 3
0 0 0 1
0 0 0 0




has full column rank.

Definition 14.13. If all of the rows of a matrix A are linearly independent, we say A has full
row rank.

Note we can determine the column rank of A, by putting it in echelon form and counting the
number of leading 1’s in each column.

Example 14.10. B =




1 2 1 0 0
0 1 0 1 0
0 0 1 3 0
0 0 0 1 0


 has full row rank, but NOT full column rank.

Definition 14.14. If all of the rows AND columns of a matrix A are linearly independent, we say
A has full rank.
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Property: If n×m matrix A has full column rank, what is the relationship between n and m?
a) n ≥ m
b) n ≤ m
c) n = m
d) I love math!

Property: If n×m matrix A has full row rank, what is the relationship between n and m?
a) n ≥ m
b) n ≤ m
c) n = m
d) I don’t want this class to ever end!

Property: If n×m matrix A has full rank, what is the relationship between n and m?
a) n ≥ m
b) n ≤ m
c) n = m
d) I love cats!
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14.7 QR Factorization

In linear algebra it is often useful to represent matrices in another form. We have already discussed
the value of Diagonalizing a matrix, when it is possible. We will not talk about all of our different
factorizations of matrices, but we will end our time in linear algebra discussing both the QR and
SVD factorizations of matrices

QR Factorization: Let A be an n × m matrix with linearly independent columns (aka full
column rank), then A can be factorized as A = QR where Q is an n ×m orthogonal matrix (has
orthonormal columns) and R is an m×m upper triangular matrix with positive diagonal entries.

Note: Matrix A does not need to be square, but since A has to have full column rank, we need
the number of columns of A to be than the number of rows of A.

QR Process:

1. Find an orthonormal basis for the columns of A. (using Gram-Schmidt)

2. Find R by computing R = QTA (works because Q is orthogonal so Q−1 = QT ).
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Example 14.11. Calculate the QR factorization for A =



−1 3 4
0 4 1
1 1 6


 .

172



14.8 Usefulness of QR Factorization

Diving into Numerical Analysis:
Linear Algebra Has Two Fundamental Problems:

1. Solving Ax = b

2. Diagonalizing a matrix A (finding eigenvalues)

Problems: Theoretically perfect algorithms can be very numerically unstable. Errors occur and
sometimes are unavoidable and can compound especially for real life applications when we have
large matrices.

Solution: Orthogonal matrices are the best for numerical stability so we want to use them if we can.

Methods for Solving Ax = b

• Gaussian Elimination/LU Decomposition Advantages:

– Works for any matrix

– Finds all solutions when they exist

– Easy to program (rref!)

– Fast

Disadvantages:

– Can be unstable

– Can’t be used to approximate solutions when systems have no solution (aka least
squares)

• QR Decomposition (using Gram-Schmidt): Ax = b can be solved by QRx = b → Rx = QT b
which is easier to solve.
Advantages:

– Works for any matrix

– Finds all solutions when they exist

– Easy to program

– Rx = QT b is well conditioned

– Finds approximate solutions

Disadvantages:

– Slower than LU

– More complicated
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15 Singular Value Decomposition

15.1 Spectral Theorem

We have already discussed the value of diagonalizing a matrix. Recall, A is diagonalizable if there
exists matrices P and D such that A = . Unfortunately we can’t always diagonalize a
matrix. When can’t we diagonalize a matrix?

Fortunately, we have a useful factorization called Singular Value Decomposition which will work
for all matrices. Singular values appear in many linear algebra applications especially applications
like clustering (eigenvectors help with this too!), statistics, signal processing, and other applications
that involve big data. If we had an Applied Linear Algebra II course (oh boy!) we would go into
more examples of these applications, but for now we will just discuss a few of them in a lab. Before
we discuss these applications, we will first talk about a very nice theorem which is invoked in SVD.

Symmetric Matrices and Orthogonal Matrices have many nice properties. For example, last class
we learned that if P is orthogonal then P−1 =

Theorem 15.1. If A is symmetric, then the eigenvectors associated with distinct eigenvalues are
orthogonal.

Pf. Omitted. See supplementary text.

Why is this nice?

Theorem 15.2. ATA has nonegative, real, eigenvalues. (Remember ATA is symmetric!)

Definition 15.1. A square matrix A is orthogonally diagonalizable if there exists an orthogonal
matrix P and diagonal matrix D such that A = PDP−1.

Note: This is the same idea as diagonalization, just normalize your eigenvectors (since by the
previous theorem, they are orthogonal!).

Theorem 15.3. The Spectral Theorem: A matrix is orthogonally diagonalizable if and only if
A is symmetric.

Pf. Omitted. The complete proof is rather difficult and is not included here. Often undergraduate
linear algebra textbooks do not include the complete proof since half of the proof is easier to prove
using complex numbers.

This means if A is symmetric then, A is !
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Example 15.1. Orthogonally diagonalize ATA for A =



2 1
1 0
0 1


. Eva found that the eigenspace

associated with λ = 1 is {
[−1√

5
2√
5

]
}.

15.2 Singular Value Decomposition

Idea Behind SVD: For any m × n matrix A, ATA is symmetric which means it is orthogonally
diagonalizable! From Theorem 15.2 on the previous page, we know the eigenvalues for ATA are
nonegative. This allows us to order our eigenvalues in decreasing order:

λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λn ≥ 0

Definition 15.2. The singular values of A are the square roots of the eigenvalues of ATA and
are denoted {σ1, σ2, ...σn}.

That is σi =
√
λi.
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Note: The singular values of A are the lengths of the vectors Av1, Av2,.. Avn where the vi’s are
eigenvectors.

Theorem 15.4. Let {v1, v2, ...vn} be an orthonormal basis of ATA arranged in order of eigenvalues:
λ1 ≥ λ2 ≥ ...λn. And suppose A has r nonzero singular values. Then {Av1, Av2, ...Avr} is an
orthogonal basis for the range/column space of A and the rank of A is r.

Pf. Omitted. Please see supplementary text for details.

Theorem 15.5. Singular Value Decomposition: Suppose A is an n×m matrix with rank r.
Then there exists an n ×m matrix Σ (see below) for which the diagonal entries in D are the first
r singular values of A σ1 ≥ σ2 ≥ σr > 0 and an n× n orthogonal matrix U and m×m orthogonal
matrix V such that A = UΣV T

Σ is a matrix that is the same size as A. We have two cases for Σ:

First Let D be the diagonal matrix with ordered singular values:

D =




σ1 0 . . . 0
0 σ2 . . . 0
...

...
...

0 0 . . . σr




Case 1: n ≥ m: (A is a tall matrix)

Σ =

[
D
0

]
Case 2: n ≤ m: (A is a wide matrix)

Σ =
[
D 0

]

Note: For case 2: we can sometimes make life easier for ourselves by considering B = AT . Then
B is a matrix with Case 1: and if B = UΣV T then A = BT = (UΣV T )T =

Octave Code for SVD: [U,S,V] = svd(B)

Theorem 15.6. Every n×m matrix A has a singular value decomposition.

Heuristic Proof: Follow the construction from Thm 15.5 by completing the steps below.
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Steps for Singular Value Decomposition:

1. Orthogonally Diagonalize ATA to find V (V will be our P when ATA = PDP T ).

2. Find Σ using the singular values of A.

3. Find U in 2 Steps

(a) Find the first entries by ui =
1

σi
Avi

Why? Our goals is to find U so that A = UΣV T aka AV = UΣ. The ith column of AV
is Avi and the ith column of UΣ is σiui. So we need Avi = σiui. Thus
ui =

1
σi
Avi

(b) Fill out U by extending to an orthonormal basis of Rn. Basically you can do this by
adding the normalized vectors from null(AT ). Here is why: The first vectors you find

using ui =
1

σi
Avi, actually give you a basis for the range space of A (aka the column

space). The column space is a subspace of R3 and remember our theorem which states
V = W

⊕
W⊥ for any subspace W. So in our case, R3 = (ran(A))

⊕
(ran(A))⊥. It

turns out (ran(A))⊥ = null(AT ) (proof omitted).

Example 15.2. Find the singular value decomposition (SVD) for A =



2 1
1 0
0 1


.

Recall, in Ex 15.1 we found ATA =

[
2√
5

−1√
5

1√
5

2√
5

]
·
[
6 0
0 1

]
·
[

2√
5

1√
5−1√

5
2√
5

]
.
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Example 15.3. Find the SVD for A =

[
−1 1 0
2 2 1

]

If you can use technology, load up Octave type [U,S,V]=svd(A). To do this by hand, do the follow-
ing:
Step 1: Orthogonally Diagonalize ATA to find V (V will be our P when ATA = PDP T )

Note ATA =



−1 2
1 2
0 1


 ·

[
−1 1 0
2 2 1

]
=



5 3 2
3 5 2
2 1 1


. We could TOTALLY Do this, but if we diago-

nalize B = AT , we will get a 2 by 2 matrix which is easier. Let’s do this.
Let B = AT .

Then BTB = AAT =

[
−1 1 0
2 2 1

]
·



−1 2
1 2
0 1


 =

[
2 0
0 9

]
= M

We first find the eigenvalues of M. Because it is a diagonal matrix, we know the eigenvalues are
λ1 = 9, λ2 = 2 (Note that I ordered them from largest to smallest.)

Next we find the eigenspaces:

E9 = null(M − 9I) = null(

[
−7 0
0 0

]
)⇒

(
−7 0 0
0 0 0

)
. So x = 0, y = y. So E9 =span{

[
0
1

]
}

We need to normalize this vector, but it already has length 1 so we don’t have to do anything else.

E2 = null(M − 2I) = null(

[
0 0
0 7

]
)⇒

(
0 0 0
0 7 0

)
. So x = x, y = 0. So E2 =span{

[
1
0

]
}

We also need to normalize this vector, but it already has length 1 (neat!).

Thus, BTB = PDP T =

[
0 1
1 0

]
·
[
9 0
0 2

]
·
[
0 1
1 0

]
(Note in this example P T = P ).

Thus the V for B is P =

[
0 1
1 0

]
. So V T = P T = P .

Step 2: Find Σ using the singular values of A.

Since B is a 3× 2 matrix, Σ for B is a 3× 2: Σ =



3 0

0
√
2

0 0


. Remember we put the singular values

for the B along the diagonals (the square roots of the eigenvalues.)

We are almost done! Go to the next page!
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Step 3: Find U in 2 Steps:

1) Find the first entries by ui =
1

σi
Avi.

2) Then Fill out U by extending to an orthonormal basis of Rn by finding the nullspace
of AT .

Since we are using B, we use ui =
1

σi
Bvi:

u1 =
1
3



−1 2
1 2
0 1


 ·

[
0
1

]
= 1

3



2
2
1


 =




2
3
2
3
1
3


.

u2 =
1√
2



−1 2
1 2
0 1


 ·

[
1
0

]
= 1√

2



−1
1
0


 =




−1√
2
1√
2

0


 .

So we have found the first two entries of U for B. We need to fill out U by finding vectors in

null(BT ) = null(

[
−1 1 0
2 2 1

]
)⇒

(
−1 1 0 0
2 2 1 0

)
⇒

(
1 0 1

4 0
0 1 1

4 0

)
So x = −z

4 , y = −z
4 , z = z. So

the nullspace is



−1
−1
4


 We need to normalize this vector:

||



−1
−1
4


 || =

√
(−1)+(−1)2 + 42 =

√
18, so our 3rd vector is




−1√
18−1√
18
4√
18


.

Hurray we have completed U! U =




2
3

−1√
2

−1√
18

2
3

1√
2

−1√
18

1
3 0 4√

18




Thus B = UΣV T =




2
3

−1√
2

−1√
18

2
3

1√
2

−1√
18

1
3 0 4√

18






3 0

0
√
2

0 0



[
0 1
1 0

]

Last Step because we were using B = AT :
If B = UΣV T , and BT = A, then A = BT = (UΣV T )T = V ΣTUT .

So A = V ΣTUT =

[
0 1
1 0

] [
3 0 0

0
√
2 0

]



2
3

2
3

1
3−1√

2
1√
2

0
−1√
18

−1√
18

4√
18
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16 Practice Problems and Review for Exams

The following pages are practice problems and main concepts you should master on each exam.

These problems are meant to help you practice for the exam and are often harder than what you
will see on the exam. You should also look over all ICE sheets, Homework problems, and Lecture
Notes. Make sure you can do all of the problems in these sets.

Disclaimer: The following lists are topics that you should be familiar with, and these are problems
that you should be able to solve. This list may not be complete. You are responsible for everything
that we have covered thus far in this course.

We will post the solutions to these practice exams on our blackboard site. If you find any mistakes
with my solutions, please let us know right away and feel free to email at any hour.

Good Luck,
Dr. H and Professor Smith
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MA 307 –Review for Exam 1

Remember to look over all Homework problems, Daily Assignments, and Lecture Notes (all are

posted). Make sure you can do all of those problems. You can also practice with the problems

listed as part of this working review. Disclaimer: The following is a list of topics that you should

be familiar with, and a list of problems that you should be able to solve. This list may not be

complete. You are responsible for everything that we have covered thus far in this course.

Main Concepts for Exam 1

Mastery Concept 1: Gaussian Elimination
Mastery Concept 2: Understanding solutions to systems of equations
Mastery Concept 3: Vector Spaces and Subspaces
Mastery Concept 4: Span
Mastery Concept 5: Basis/Linear Independence
Mastery Concept 6: Least Squares

1. Concept 1: Gaussian Elimination

(a) Know how to use Gaussian Elimination to solve systems of linear equations.

i. Know how to write solutions sets of systems

ii. Be able to create a Row Reduced Echelon Form Matrix using Row Op-
erations

iii. Be able to do Gaussian Elimination by hand and also by using technology
like Octave/Matlab or your calculator

2. Concept 2: Solutions to systems of equations

(a) Know how to write solution sets for row reduced echelon form.

(b) Know how to write solution sets as spans or parametric forms using free variables.

(c) Know how to recognize a consistent system or inconsistent system.

3. Concept 3: Vector Spaces

(a) Know the 10 properties that set need to satisfy in order to be defined as a vec-
tor space -remember these spaces only have 2 operations -addition and scalar
multiplication!

(b) Know how to recognize when a set is not a vector space (usually you should check
the closure and identity properties)

(c) Be able to list examples of Vectors spaces and understand why they are vector
spaces. Some examples include, but are not limited to:
Rn, GF (2)n, Mn×m, Pn, and The space of greyscale images, a spanning set, the
solution space for a homeogeneous system, the range space of a transformation,
the nullspace of a transformation,(the last two may show up on Exam 2)...
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4. Concept 3: Subspaces

(a) Know how to test whether or not a subset of a vector space is a subspace (that
is, the set acts like a self-contained vector space.)

(b) How to show a subset, W, is a subspace:
Method 1:

i. Check if 0 ∈ W (that is make sure the additive identity is in W.)

ii. Check that W is closed under linear combinations. That is let u,v be arbi-
trary vectors in W and make sure αu + βv ∈ W for arbitrary scalars α, β.

Method 2:

i. Show that the subspace can be written as a span of vectors.

5. Concept 4: Span

(a) Know the definition of a span of vectors :
span(v1, v2, ...vn)={a1v1 + a2v2 + ...+ anvn|ai ∈ R}
(the set of all linear combinations of v1, ...vn.)

(b) Be able to write a vector space as a span of vectors. Another way to say this is
to find a spanning set for a vector space.

i. Process: get a set in the form:{a1v1+a2v2+...+anvn|ai ∈ R} so that there are
no restrictions on the scalar coefficients. Often this can be done by creating
an augmented matrix of the requirements of the set and using free variables
to help find your coefficients.

ii. See HW, Spanning Notes

(c) Know the definition of a spanning set :
{v1, v2, ...vn} is a spanning set for V if span(v1, v2, ...vn) = V .

(d) Be able to determine whether or not a particular vector is in the span of a set of
vectors.

i. Process: Find coefficients ai such that ~u = a1v1 + a2v2 + ... + anvn, then
~u ∈span(v1, v2, ...vn)

ii. See HW Spanning Notes

(e) Be able to show whether or not a set of vectors spans a whole Vector Space (that
is, be able to show a set is a spanning set for a vector space.)

i. Process: Pick an arbitrary vector from the Vector Space and try to find scalars
ai such that the vector can be written as a linear combination of the set of
vectors.

6. Concept 5: Linear Independence

(a) Know the definition of linear independence and dependence
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(b) Know how to determine whether or not a set of vectors is linear independent or
dependent. Here is the process to check whether or not {v1, v2, ...vn}:
Step 1: Set an arbitrary linear combination of vi’s equal to 0:
α1v1 + α2v2 + ...+ αnvn = 0
Step 2: See if you can find values for the αi’s that are not all 0. If you can, the
set is dependent. If α1 = α2 = ... = αn = 0 is the only possible values for the α’s,
then the set is linear independent.

7. Concept 5: Basis

(a) Know the standard basis for Rn, Pn, and Mn×m.

(b) Know the requires/definition of a basis: A set {v1, v2, ...vn} is a basis for V if both
of the following are true:

i. Span({v1, v2, ...vn})=V

ii. {v1, v2, ...vn} is linear independent

(c) Know how to find a basis for a set

8. Concept 6: Least Squares

� Be able to find an approximate solution to an inconsistent solution by solving the
normal equation AT · Ax = AT b.
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Practice Problems:

1. Give the solution set of each system.

(a)
3x+ 2y + z = 1
x− y + z = 2

5x+ 5y + z = 0

(b)

x+ y − 2z = 0
x− y =−3

3x− y − 2z =−6
2y − 2z = 3

(c)
2x− y − z + w = 4
x+ y + z =−1

(d)
x+ y − 2z = 0
x− y =−3

3x− y − 2z = 0

2. Verify that each is a vector space by checking the conditions.

(a) The collection of 2×2 matrices with 0’s in the upper right and lower left entries.

{
(
a 0
0 b

)
| a, b ∈ R}

(b) The collection {a0 + a1x+ a3x
3 | a0, a1, a3 ∈ R} of cubic polynomials with no

quadratic term.

3. Determine if each set is linearly independent (in the set’s natural vector space).

(a) {




1
2
0


 ,



−1
1
0


} ⊆ R3

(b) {(1 3 1), (−1 4 3), (−1 11 7)} ⊆ M1×3

(c) {
(

5 4
1 2

)
,

(
0 0
0 0

)
,

(
1 0
−1 4

)
} ⊆ M2×2

4. Is the vector in the span of the set?




1
0
3


 {




2
1
−1


 ,




1
−1
1


}

5. Find a basis for each space. Verify that it is a basis.

(a) The subspace M = {a+ bx+ cx2 + dx3 | a− 2b+ c− d = 0} of P3.185



(b) This subspace of M2×2.

W = {
(
a b
c d

)
| a− c = 0}

6. Give two different bases for R3. Verify that each is a basis.

7. Find a basis for, and the dimension of, each space.

(a)

{




x
y
z
w


 ∈ R4 | x− w + z = 0}

(b) the set of 5×5 matrices whose only nonzero entries are on the diagonal (e.g., in
entry 1, 1 and 2, 2, etc.)

(c) {a0 + a1x+ a2x
2 + a3x

3 | a0 + a1 = 0 and a2 − 2a3 = 0} ⊆ P3

8. Give a basis for the span of each set, in the natural vector space.

(a) {




1
1
3


 ,



−1
2
0


 ,




0
12
6


} ⊆ R3

(b) {x+ x2, 2− 2x, 7, 4 + 3x+ 2x2} ⊆ P2

9. Find a least squares solution of



−1 2
2 −3
−1 3


x =




4
1
2


.

10. Find a least squares solution of




1 −2
−1 2
0 3
2 5


x =




3
1
−4
2


.
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MA 307 –Review for Exam 2

Remember to look over all Homework problems, Daily Assignments, and Lecture Notes (all are

posted). Make sure you can do all of those problems. You can also practice with the problems

listed as part of this working review. Disclaimer: The following is a list of topics that you should

be familiar with, and a list of problems that you should be able to solve. This list may not be

complete. You are responsible for everything that we have covered thus far in this course.

Main Concepts for Exam 2

Mastery Concept 1: Gaussian Elimination
Mastery Concept 2: Understanding solutions to systems of equations
Mastery Concept 3: Vector Spaces and Subspaces
Mastery Concept 4: Span
Mastery Concept 5: Basis/Linear Independence
Mastery Concept 6: Least Squares
Mastery Concept 7: Linear Transformations/Functions
Mastery Concept 8: Matrix representation for a linear transformation
Mastery Concept 9: Injective and Surjective Linear Transformations
Mastery Concept 10: Rank Nullity Theorem
Mastery Concept 11: Matrix Spaces: Nullspace, Column Space, Nullity, Rank
Mastery Concept 12: Determinants

New Concepts

Concept 7: Linear Transformation/Functions

1. Know the definition of a Linear Transformation:
T : U → V is a linear transformation if T (αu+βv) = αT (u) +βT (v) for any arbitrary
linear combination αu+ βv ∈ U .

2. Know how to test whether or not a Function/Mapping is a Linear Transformation:
Process:

(a) Method 1: Show that T (αu + βv) = αT (u) + βT (v) for any arbitrary linear
combination.

(b) Method 2: Show that both of the following hold:

i. T (u+ v) = T (u) + T (v)

ii. T (αu) = αT (u)

(c) Note: If T (0) 6= 0, T is NOT a linear transformation. But if T (0) = 0, you must
use Method 1 or 2 to show it is a linear transformation.

3. Know how to find images of linear transformations.(Given T and x, what is T (x)?)
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4. Know how to find a vector whose image is produced by a linear transformation. (Given
T and b, what x gives T (x) = b?)

Concept 8: Matrix Representation of a Linear Transformation

� Know that every linear transformation can be represented in a matrix form.

� Process for finding the matrix form for a linear transformation (aka the change of basis
matrix) for T : V → W

Step 1: Find the basis elements for the domain (V), codomain (W), and ran(T) (the
range space of T)
Step 2: Map the basis elements of V to the basis elements of ran(T)
Step 3: Find the coordinate vectors or our ran(T) elements with respect to the basis
for the codomain (W). That is write our ran(T) basis elements as a linear combination
of the basis elements of the codomain, then list the coefficients into a column vector
Step 4: Construct your matrix representation by using the coordinate vectors as the
column vectors for M.

� You should know how to check whether your matrix representation does the same thing
as the transformation. Do this by taking the a domain element and applying T to the
element. Write the image of this element as a coordinate vector of the codomain.
check to see if this coordinate vector gives you the same thing as writing your domain
element as a coordinate vector and applying your matrix representation to it. Then
check to see if your vector output matches the coordinate vector you got earlier.

Concept 9: Injective and Surjective Linear Transformations

1. Know the definition of an injective linear transformation: if T (u) = T (v) then u = v.

2. Know the other terms for injective maps: one to one, injection

3. Know how to determine if a function is injective. There are 2 Methods:
Method 1: Using the definition of injective functions:

(a) Suppose two arbitrary values in the range are equal T (u) = T (v).

(b) Use the properties of the vector space and the definition of the function to show
that the input values are equal (u = v.)

Method 2: Use the Nullspace

(a) Find the Nullspace(T), if Null(T)={0}, T is injective.

4. Know the definition of a surjective linear transformation: For every value in the
codomain, there is a value in the domain that maps to it. That is if T : V → W ,
then T is a surjection if for every w ∈ W , there exists a v ∈ V such that T (v) = w.

5. Know the other terms for surjective maps: onto, surjection
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6. Know how to determine if a function is surjective. There are 2 Methods Method 1:
Use the definition of a surjective map:

(a) Pick an arbitrary value in the codomain.

(b) See if there is an input value that will map to it.

(c) Note often if the map has some restrictions to its output values, the map is not
surjective -exploit these restrictions to show there is no input that can map to
this output.

Method 2: Use the range space

(a) if the rank(T)=dim(codomain), T is surjective

7. Know the definition of a bijection or isomorphism

8. Know how to create an isomorphism between vector spaces (key: Map basis elements
to basis elements.)

9. Know the definition of isomorphic vector spaces.

10. Nullspace and Range Space and Rank Nullity Theorem

(a) Know the definition of the nullspace of a linear transformation, T : V → W :
null(T ) = {v ∈ V | T (v) = 0}.

(b) Know the definition of the nullity of a linear transformation, T : the dimension of
null(T ).

(c) Know that null(T ) is a subspace of V.

(d) Know how to use the nullspace to determine whether or not a transformation is
injective

(e) Know how to find the nullspace of a transformation.

11. Range Space

(a) Know the definition of the nullspace of a linear transformation, T : V → W ,
ran(T ) = {T (v)| v ∈ V }.

(b) Know the definition of the rank of a linear transformation, T : the dimension of
ran(T ).

(c) Know that ran(T) is a subspace of W.

(d) Know how to use the rank and range space to determine whether or not a trans-
formation is surjective

(e) Know how to find the range space of a transformation.
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Concept 10: The Rank Nullity Theorem

1. Know what the domain and codomain of a linear transformation

2. Know the Rank Nullity Theorem: Given a linear transformation T : V → W , dim(V)=
Rank+Nullity

3. Know how to use this theorem to determine whether or not transformations can be
injective or surjective

4. Be able to construct injective and surjective maps if they exist.

Concept 11: Matrix Spaces: Nullspace and Range/Column Space

� Know the definition of the nullspace for an m×n matrix M, nulls(M) = {v ∈ Rn|Mv =
0}

� If M is an m× n matrix, the Nullspace is a subspace of Rn

� Know the definition of the range space for an m×n matrix M, ran(M)={Mx ∈ Rm| x ∈
Rn}

� If M is an m× n matrix, the range space is a subspace of Rm

� Know that the nullity of a matrix to be the dimension of the nullspace and the rank
of a matrix to be the dimension of the range space. Furthermore the same ideas for
injective and surjective linear transformations work for Matrix Spaces.

� Know how to find the nullspace and range space for a matrix.

� Know that a shortcut for finding the range space or column space of a matrix: Find
the echelon form of the matrix and pick the original columns that correspond to the
columns with leading ones.

� Know that the number of columns with leading 1’s of a matrix’s echelon form is the
same as the rank for that matrix.

� Know that the number of columns without leading 1’s of a matrix’s echelon form is
the same as the nullity for that matrix.

Concept 12: Determinants

� Know how to find the determinant of a 2 by 2 matrix: | a b
c d

| = ad− bc

� Know how to efficiently do cofactor expansion to determine the determinant of a ma-
trix: |A| = ∑n

i=1(−1)i+jai,j|Mi,j|,
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For example: Let A =




a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4


, then

|A| = a1,1

∣∣∣∣∣∣

a2,2 a2,3 a2,4
a3,2 a3,3 a3,4
a4,2 a4,3 a4,4

∣∣∣∣∣∣
−a1,2

∣∣∣∣∣∣

a2,1 a2,3 a2,4
a3,1 a3,3 a3,4
a4,1 a4,3 a4,4

∣∣∣∣∣∣
+a1,3

∣∣∣∣∣∣

a2,1 a2,2 a2,4
a3,1 a3,2 a3,4
a4,1 a4,2 a4,4

∣∣∣∣∣∣
−a1,4

∣∣∣∣∣∣

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
a4,1 a4,2 a4,3

∣∣∣∣∣∣
.

� Know that we can expand across any row or column when completing cofactor expan-
sion.

Other Related Concepts;

1. Inverse Matrices

� Know when a Matrix will have an Inverse (AKA the Invertible Matrix Theorem:)
Suppose A is a square n × n. The following statements are either all true or all
false:

(a) A is invertible

(b) A has n pivot positions

(c) The Nullspace of A is trivial (The equation Ax = 0 has only the trivial
solution.)

(d) The columns of A form a linearly independent set.

(e) The columns of A span Rn

(f) The linear transformation represented by A is injective.

(g) The linear transformation represented by A is surjective.

(h) AX = b has a unique solution

(i) AT is an invertible matrix.

(j) There is an n× n matrix C such that CA = I

(k) There is an n× n matrix D such that AD = I

(l) detA 6= 0

2. Coordinate Vectors

� If we think of our basis elements as the building blocks for a vector space, our
coordinate vectors represent the manual (or instructions) on how to put our basis
elements together to get a particular vector.

� Given a basis for V , we are able to represent any vector v ∈ V as a coordinate
vector in Rn, where n = dimV . Suppose B = {v1, v2, . . . , vn} is a basis for V ,
then we find the coordinate vector [v]B by finding the scalars, αi, that make the

linear combination v = α1v1 +α2v2 + . . .+αnvn and we get [v]B =




α1

α2
...

αn


 ∈ Rn.
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Practice Problems:

1. For each map below, describe the range space and find the rank of the map.

(a) h : P3 → R2 given by

ax2 + bx+ c 7→
(
a+ b
a+ c

)

(b) f : R2 → R3 given by
(
x
y

)
7→




0
x− y

3y




2. Verify that this map is an bijection (isomorphism): h : R4 →M2×2 given by




a
b
c
d


 7→

(
c a+ d
b d

)

3. Find the determinant of the following matrices.

(a)

∣∣∣∣
1 4
2 8

∣∣∣∣

(b)

∣∣∣∣∣∣

2 1 1
1 1 0
6 4 1

∣∣∣∣∣∣

(c) det




1 0 −1
3 1 1
−1 0 3




4. Find the coordinate vectors for the standard basis for R3 in terms of the basis: B =

{




1
2
3


 ,




1
1
1


 ,




0
1
−1


}

5. Use the echelon version of A =




1 2 1 0
2 3 1 −1
7 11 4 −3


 to determine the column rank, row

rank, rank, and nullity for A.

6. Assume that each matrix represents a map h : Rm → Rn with respect to the standard
bases. In each case, (i) state m and n (ii) find rangespace (h) and rank of h (iii) find
nullspace of nullity, and (iv) state whether the map is onto and whether it is one-to-one.

(a)

[
2 1
−1 3

]
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(b)




0 1 3
2 3 4
−2 −1 2




(c)




1 1
2 1
3 1




7. If T is a linear transformation from V → W with rank= 4 and nullity= 2, what can
we say about the dimension of V? of W?

8. If T is a linear transformation from P4 → M2×3 can T be injective? If so, construct
an example of such a possible linear transformation.

9. If T is a linear transformation from P4 →M2×3 can T be surjective? If so, construct
an example of such a possible linear transformation.

10. If T is a linear transformation from P4 → M2×3 can T be bijective? If so, construct
an example of such a possible linear transformation.

11. If T is an isomorphic linear transformation from V → W . What can we say about the
dimensions of V and W?

12. Find the nullspace, nullity, range/column space and rank for the following matrices:

(a) A =




1 0 −4 −3
−2 1 13 5
0 1 5 −1


 rref →




1 0 −4 −3
0 1 5 −1
0 0 0 0




(b) B =




1 −2 5
2 4 1
−4 0 2
1 −2 0
3 1 1




rref →




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0




13. Verify that each map is a linear transformation.

(a) h : P3 → R2 given by

ax2 + bx+ c 7→
(
a+ b
a+ c

)

(b) f : R2 → R3 given by
(
x
y

)
7→




0
x− y

3y




14. Consider the linear transformation T : R2 → P1 where T (

[
a
b

]
) = bx − a Use these

bases for the spaces: basis for domain: BV = standard basis and basis for codomain:
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BW = {x, 1} . Represent this linear transformation (find the change of basis matrix:)

Check that this matrix does the same thing as our transformation for

[
1
2

]
.

15. Consider the linear transformation T : P2 → P1 where T (ax2 + bx+ c) = 2ax+ b

Use these bases for the spaces. Use these bases for the spaces: basis for domain: BV =
standard basis for P2 basis for codomain: BW = standard basis for P1 Represent this
linear transformation (find the change of basis matrix:) Check that this matrix does
the same thing as our transformation for x2 − x+ 1.
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MA 307 –Review for Exam 3

Remember to look over all Homework problems, Daily Assignments, and Lecture Notes (all are

posted). Make sure you can do all of those problems. You can also practice with the problems

listed as part of this working review. Disclaimer: The following is a list of topics that you should

be familiar with, and a list of problems that you should be able to solve. This list may not be

complete. You are responsible for everything that we have covered thus far in this course.

Main Concepts for Exam 3

Mastery Concept 1: Gaussian Elimination
Mastery Concept 2: Understanding solutions to systems of equations
Mastery Concept 3: Vector Spaces and Subspaces
Mastery Concept 4: Span
Mastery Concept 5: Basis/Linear Independence
Mastery Concept 6: Least Squares
Mastery Concept 7: Linear Transformations/Functions
Mastery Concept 8: Matrix representation for a linear transformation
Mastery Concept 9: Injective and Surjective Linear Transformations
Mastery Concept 10: Rank Nullity Theorem
Mastery Concept 11: Matrix Spaces: Nullspace, Column Space, Nullity, Rank
Mastery Concept 12: Determinants
Mastery Concept 13: Eigenvalues and Eigenvectors
Mastery Concept 14: Diagonalization
Mastery Concept 15: Markov Chains
Mastery Concept 16: Gram-Schmidt and Orthogonality

New Concepts
Mastery Concept 13: Eigenvalues and Eigenvectors

• Know the definition of eigenvectors, eigenvalues, and eigenspaces:

• Know the how to find the eigenvalues of a matrix A: find the scalars λ so that det(A−
λI) = 0.

• Know that the characteristic equation is det(A− λI) = 0

• Know the characteristic polynomial is det(A− λI).

• Know how to find the eigenvalues of a diagonal or triangular matrix (they are just the
diagonal entries!)

• Know how to find an eigenvector for an eigenvalue, λ: Solve (A − λI)v = 0 aka: find
the nullspace of (A− λI)

• Know how to find an eigenspace associated with eigenvalue λ: Solve (A − λI)v = 0
aka: find the nullspace of (A− λI). Write the space as a span.
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Mastery Concept 14: Diagonalization

• Know the definition of an eigenbasis for Rn: a set of n linearly independent eigenvectors:
v1, v2, . . . , vn

• Know how to determine whether or not a matrix is diagonalizable (and orthogonally
diagonalizable)

• Know that two matrices, A and B, are similar if there exists an invertible matrix P
such that A = PBP−1

• Know the definition of a diagonalizable matrix: A matrix that is similar to a diagonal
matrix. In other words there exists diagonal D and invertible P such that A = PDP−1

• Know the Process to Diagonalize a Matrix, If Possible

1. Find the eigenvalues of the matrix.

2. Find linearly independent eigenvectors of the matrix.

3. Determine if you have enough eigenvectors from Step 2, that you can span Rn.
Note you can only proceed if there are the same number of eigenvectors as the
dimension of A (n) if there are not enough eigenvectors, the matrix is NOT
diagonalizable).

4. Construct P from the eigenvectors from Step 2.

5. Construct D from the corresponding eigenvalues (order matters -make sure they
match the eigenvectors!).

6. Optional: Check to make sure P and D work by checking if A = PDP−1, but it
is easier to just check if AP = PD.

• Know the definition of a symmetric matrix: AT = A

• Know that symmetric matrices can be orthogonally diagonalizable: This means A =
PDP T where P is orthogonal.

• Know the process for orthogonally diagonalizing ATA or any symmetric matrix (Same
as diagonalization only normalize your eigenvectors.)

Mastery Concept 15: Markov Chains

• Know the definition of a Markov Chain/Process: A process in which the probability
of the system being in a particular state at a given time period depends only on its
state at previous time period.

• Know how to construct a transition for a Markov process and be able to use it to find
future states.

• Know the properties of a transition matrix: All columns add up to 1 and every entry
is between 0 and 1. 196



• Know what a steady state vector is for a Markov process: A vector such that Tv = v
where T is the transition matrix.

• Know how to find a steady state vector: Solve (T − In)v = 0 (find a normalized
eigenvector for the eigenvalue 1.)

Mastery Concept 16: Gram Schmidt and Orthogonality

• Know the definition of Orthogonal matrices, a matrix in which all its columns are
orthonormal.

• Know properties of orthogonal matrices like: A−1 = AT

• Know the definition of the projection of u onto v: projvu =
u · v
||v||2v

• Know the definition of an orthogonal set of matrices and how to check if two vectors
are orthogonal (check u · v = 0)

• Know how to determine the length of a vector: ||v|| = √v · v =
√
v21 + v22 + ...+ v2n

• Know the definition of an orthonormal set of vectors: a set which is orthogonal and all
vectors have length 1.

• Know that a set of nonzero orthogonal vectors is a linearly independent.

• Know the definition of an orthogonal basis: A basis made up of orthogonal vectors

• Be able to use the Gram Schmidt process to create an orthogonal basis for a span of
vectors.

• Gram-Schmidt Process: Given a basis {b1, b2, ...bn} for a vector space V, we can
create an orthogonal basis for V given by {v1, v2, ...vn} by the following process:
v1 = b1

v2 = b2 −
b2 · v1
v1 · v1

v1

v3 = b3 −
b3 · v1
v1 · v1

v1 −
b3 · v2
v2 · v2

v2

v4 = b4 −
b4 · v1
v1 · v1

v1 −
b4 · v2
v2 · v2

v2 −
b4 · v3
v3 · v3

v3

...

vn = bn −
bn · v1
v1 · v1

v1 −
bn · v2
v2 · v2

v2 −
bn · v3
v3 · v3

v3 − · · · −
bn · vn−1

vn−1 · vn−1

vn−1

• Know how to write a matrix into its QR Decomposition:

1. Find an orthonormal basis for the columns of A. (using Gram-Schmidt)
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2. Find R by computing R = QTA (works because Q is orthogonal so Q−1 = QT ).

Other Topics -not Mastery
Singular Value Decomposition

• Know some of the applications of SVD

• Know the difference between numerical rank and true rank

• Steps for Singular Value Decomposition:
Step 1: Orthogonally Diagonalize ATA to find V (V will be our P when ATA = PDP T ).

Step 2: Find Σ using the singular values of A.

Step 3: Find U in 2 Steps

Step 3a: Find the first entries by ui =
1

σi
Avi

Step 3b: Add the normalized vectors from null(AT )

Column Rank and Left and Right Inverses

• Know the The Invertible Matrix Theorem: Restated Suppose A is a square n×n.
Then the following are equivalent (if one is true, they all are true)

1. A is invertible

2. AX = b has a unique solution

3. detA 6= 0.

4. AT is an invertible matrix.

5. A has full rank/ the columns of A are linearly independent

6. nul(A) = 0

• Know how to determine if a matrix has full column rank: Every column of the echelon
form of the matrix has a leading one.

• Know how to determine if a matrix has full rank: Every column AND row of the
echelon form of the matrix has a leading one.

• Know how to determine if a matrix has full column rank: Every column of the echelon
form of the matrix has a leading one.

• Know if A has full column rank, (ATA)−1AT is a left inverse of A.

• Know if A has full row rank, AT (AAT )−1 is a right inverse of A.

• Know that while inverses of matrices are unique, but left and right inverses are not
unique.

• Know that the set of least-square solutions of Ax = b coincides with the nonempty set
of solutions to the normal equation: ATAx = ATb.
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Practice Problems:

1. Orthogonally diagonalize A =




2 1
2 −1
1 0
0 1


 if you can. Can you do this for ATA?

2. Find the singular value decomposition for




2 1
2 −1
1 0
0 1




3. Orthogonally diagonalize

[
1 2
2 1

]

4. Find the singular value decomposition for

[
1 2
2 1

]

5. Find an orthogonal basis for S=span{




1
−2
2


 ,




1
−4
0


 ,




5
0
−4


}

6. Find the Q matrix in the QR Decomposition of




1 1 5
−2 −4 0
2 0 −4




7. Find the eigenvalues and eigenspaces for each associated eigenvalue for the following
matrices:

(a)

[
1 2
0 0

]

(b)

[
7 −8
4 −5

]

(c)




1 2 1
0 3 1
0 0 2




8. Diagonalize the following matrices if possible:

(a)

[
1 2
0 0

]

(b)

[
7 −8
4 −5

]

(c)




1 2 1
0 3 1
0 0 2
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9. In a linear algebra class of 100 students, on any given day, some are in class and the
rest are absent. It is known that if a student is in class today, there is an 85% chance
that he/she will be in class tomorrow, and if the student is absent today, there is a
60% chance that he/she will be absent tomorrow. Suppose today there are 76 kids in
class.

(a) Find the transition matrix for this scenario.

(b) Predict the number of students in class five days from now. And predict the
percentage of the class that will be absent.

(c) Find the steady state vector.
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