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1 Syllabus and Schedule

Thanks for taking Calculus II with me! It is my favorite class to teach and it is the best course of
the calculus sequence (in my opinion). You may be asking yourself (or have asked yourself), “What
is Calculus, and why do I have to take this class?” Calculus is, in my opinion, ultimately is the
study of change. In particular, calculus gives us the tools to be able to understand how changing
one or more linked variables reflects change in other variables 1. In other words, Calculus is the
study and modeling of dynamical systems2. In Calculus I, we learned about the derivative of a
function and some of its applications. Recall, a derivative is a measure of sensitivity of change in
one variable to change in the other -the instantaneous rate of change. When we learn about inte-
gration, we are measuring accumulation or the limit of a summation of smaller parts2. In Calculus
II, we will build upon this idea that we can use integrals to calculate and model complex situations
by accumulating the sums of simpler parts. We will also learn techniques used in calculating and
approximating these integrals and discuss ways of modeling functions and infinite systems.

I hope you will enjoy this semester and learn a lot! Please make use of my office hours and plan to
work hard in this class. My classes have a high work load (as all math classes usually do!), so make
sure you stay on top of your assignments and get help early. Remember you can also email
me questions if you can’t make my office hours or make an appointment outside of office hours for
help. When I am at Lewis, I usually keep the door open and feel free to pop in at any time. If I
have something especially pressing, I may ask you to come back at a different time, but in general,
I am usually available. The HW Assignments, and Practice Problems for Exams are at the end of
this course packet. I have worked hard to create this course packet for you, but it is still a work in
progress. Please be understanding of the typos I have not caught, and politely bring them to my
attention so I can fix them for the next time I teach this course. I look forward to meeting you and
guiding you through the magnificent course that is Calculus II.

Cheers,
Dr. H

Acknowledgments: No math teacher is who she is without a little help. I would like to thank my
own undergraduate professors from Taylor University: Dr. Ken Constantine, Dr. Matt Delong, and
Dr. Jeremy Case for their wonderful example and ideas for structuring excellent learning environ-
ments. I want to thank the members from both the MAA META Math the MathVote and Projects
( https://www.maa.org/programs-and-communities/curriculum%20resources/meta-mathand
http://mathquest.carroll.edu/) for sharing some of their clicker questions. I also want to thank
Dr. Ryan Hooper and Dr. Danielle Champney their problem sequences from their own courses.
And finally, I would like to thank you and all the other students for making this job worthwhile and
for all the suggestions and encouragement you have given me over the years to improve.
©Harsy

1J. Epstein. 2013 The Calculus Concept Inventory -Measurement of the Effect of Teaching Methodology
in Mathematics. Notices of the AMS 60 (8), 1018-1026

2Schumacher, etc. 2015 2015 CUPM Curriculum Guide to Majors in the Mathematical Sciences 18
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2 Syllabus Crib Notes

The full syllabus is posted in Blackboard. Here are some highlights from the syllabus:

2.1 Office Hours

Please come to my office hours! Helping you with the material is the best part of my job! I have
set weekly office hours which I hold and I encourage you to instead make appointments for me to
meet with you at a time that works for both of us! My office is in SB-144. Remember if none of
these times work, send me an email and we can schedule another time to meet. I can also answer
questions through email!

Note: Sometimes I have meetings or class that goes right up to my office hours, so if I am not
there, please wait a few minutes. Also sometimes I have unexpected meetings that get scheduled
during my office hours. If this happens, I will do my best to let you know as soon as possible and
I usually hold replacement office hours.

Help: Don’t wait to get help. Visit me during my office hours, use the discussion forum in
Blackboard, go to the Math Study Tables, find a study partner, get a tutor!

2.2 Grades

Category Percentage

Quizzes 10
Homework Takehome 15

Knewton Alta Homework 10
Exams 65

Exam # Date

1 9/23
2 10/18
3 11/10
4 12/6

Final Exam: We will not have a formal final exam. Instead Finals week will be a final Testing
Week (see description above under Master-Based Testing).

Homework: Almost every week, I will collect a homework assignment. I will post these home-
work assignments on Blackboard. You may work with others on the homework, but it must be
your own work. If I catch you copying homework, you will get a 0. Please see the academic honesty
section in the posted syllabus in Bb.

2.2.1 Exams

2.3 Expectations

This is a college level Math class and is much different than one taught in high school. We cover a
lot of (very different) material in a very limited class time. You cannot expect to be able to pass
this class if you do not spend several hours every day reading the sections and working problems

ix



outside of class. Paying attention and taking notes only during class time will not be enough. After
the problems are worked, find a common thread, idea, or technique.

Calculator Policy: No calculators or other forms of technology can be used on in-class, closed-
books assessments (quizzes, tests, final).

Academic Integrity: Scholastic integrity lies at the heart of Lewis University. Plagiarism, col-
lusion and other forms of cheating or scholastic dishonesty are incompatible with the principles of
the University. This includes using “tutoring”’ sites for homework, quizzes, and exams. Students
engaging in such activities are subject to loss of credit and expulsion from the University. Cases
involving academic dishonesty are initially considered and determined at the instructor level. If
the student is not satisfied with the instructor’s explanation, the student may appeal at the de-
partment/program level. Appeal of the department /program decision must be made to the Dean
of the college/school. The Dean reviews the appeal and makes the final decision in all cases except
those in which suspension or expulsion is recommended, and in these cases the Provost makes the
final decision.

Make-Ups: There will be no make-ups for any assignments. If you are late or miss class, your
assignment will not be accepted and there will be no make-up offered, except in extenuating and
unpredictable circumstances. If you will miss class for a justifiable & unavoidable reason, you can
contact me before you miss class & it is possible you can have a make-up. If you do not contact
me & explain your absence, you will not be allowed a make-up.

Dr. Harsy’s web page: For information on undergraduate research opportunities, about the
Lewis Math Major, or about the process to get a Dr. Harsy letter of recommendation, please visit
my website: http://www.cs.lewisu.edu/~harsyram.

Blackboard: Check the Blackboard website regularly (at least twice a week) during the semester
for important information, announcements, and resources. It is also where you will find the course
discussion board. Also, check your Lewis email account every day. I will use email as my primary
method of communication outside of office hours.

The full syllabus and schedule is subject to change and the most updated versions are
posted in the Blackboard.

x
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Calculus II Schedule Fall 2023 
The table below outlines the tentative topics to be covered each day and quiz and homework due dates.  
You also have Knewton Alta HW due most Wednesdays and Fridays. This schedule is subject to change. 

Monday Tuesday Wednesday Friday 
8/28 

Intro, Review  
 

8/29 
Review 

8/30 
Hyperbolic  
Functions 

9/1 
Average Value of an 

Integral 
9/4 

Labor Day, 
No Class 

9/5 
Integration By Parts  

HW 1 Due           

9/6 
Integration By Parts cont 

9/8 
Trig Integration 

 
9/11 

Trig Integration cont. 
 

9/12 
 Inverse Trig Sub 

HW 2 Due      

9/13 
Inverse Trig Sub Cont 

9/15 
Partial Fractions 

 
9/18 

Partial Fractions Cont. 
9/19 

Strategy for Integration  
HW 3 Due    

9/20 
Review 
Quiz 1 

9/22 
 Exam 1 

 
9/25 

Numerical 
                      Integration 

9/26 
Numerical 

                Integration cont 

9/27 
Volumes Washer Method 

9/29 
Volumes Shell Method I 

10/2 
Volumes cont. 

10/3 
. Arc Length 

HW 4 Due  

10/4 
Surface Area . 

 

10/6 
 Fall  Break,  

no class 
10/9 

Work 
 

Retesting Week 

10/10 
Work cont..  

HW 5 Due 
 Retesting Week 

10/11 
Hydrostatic Force 

 
Retesting Week 

10/13 
Improper Integrals 

 
Retesting Week 

10/16 
Improper Integrals cont. 

Quiz 2 

10/17 
Review  

HW 6 Due  

10/18 
Sequences  

(not on Exam 2) 

10/20 
Exam 2 

10/23 
Sequences cont. 
Retesting Week 

10/24 
Series 

Retesting Week 

10/25 
Series cont. 

Retesting Week 

10/27 
Integral Test 

HW 7 Due 
Retesting Week 

10/30 
Integral Test cont 

.  
 

10/31 
Comparison Tests 

HW 8 Due 
                 

11/1 
Alternating Series 

 
 

11/3 
Ratio & Root Test 

 
 

11/6 
Strategy for Series 

11/7 
Strategy for Series cont.   

HW 9 Due                   

11/8 
Flex Day 

Quiz 3                     

11/10 
Exam 3 

11/13 
Power Series 

 Retesting Week 

11/14 
Power Series cont 

Retesting Week 

11/15 
Functions as Series 

Retesting Week 

11/17 
Taylor Series 

Retesting Week 
11/20 

Taylor Series 
 

11/21 
Taylor Series Modeling  

HW 10 Due 

11/22 
Thanksgiving Break, 

 No Class 

11/24 
Thanksgiving Break, 

 No Class 
11/27  

Taylor Series Modeling 
cont. 

11/28 
Exponential 

Growth/Decay 
HW 11 Due 

11/29 
Differential Equations  

 

12/1 
Differential Equations 

cont.  
Quiz 4 

12/4 
Slope Fields 

 
 

12/5 
Optional: First Order 

Differential Equations 
HW 12 Due   

12/6 
Exam 4 

12/8 
Bonus Quiz   

Cumulative Quiz 5 
HW 13 Due 

12/11 
Retesting Week 

12/12 
Retesting Week 

12/13 
Retesting Week 

12/14 
Retesting Week  

Final Exam  
10:30am-12:30pm 
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Assessment and Mapping of Student Learning Objectives: 

Baccalaureate Characteristics: 

BC 1. The baccalaureate graduate of Lewis University will read, write, speak, calculate, and use technology at a 
demonstrated level of proficiency.   

Measurable Student Learning Outcome:  
Advocate for a cause or idea, presenting facts and arguments, in an organized and accurate manner using some 
form of technology.  Include qualitative and quantitative reasoning.   

Course Student Learning Objectives Baccalaureate 
Characteristic 

Demonstrated by 

1. Find the average value of an integral. 1-Reinforced Homework, Exams, Quizzes 
2. Match a given direction eld with a corresponding 

differential equation. 
1-Reinforced Homework, Exams, Quizzes 

3. Recognize integrands for which integration by parts is 
appropriate. 

1-Reinforced Homework, Exams, Quizzes 

4. Perform integration by parts. 1-Reinforced Homework, Exams, Quizzes 
5. Apply techniques for integrals of products and higher 

powers of sines and cosines. 
1-Reinforced Homework, Exams, Quizzes 

6. Apply techniques for integrals of secants and tangents, 
and for cosecants and cotangents. 

1-Reinforced Homework, Exams, Quizzes 

7. Apply techniques of trigonometric substitution to integrate 
various forms of integrands. 

1-Reinforced Homework, Exams, Quizzes 

8. Apply the technique of partial fraction decomposition to 
reduce an integrand to a more easily integrated form. 

1-Reinforced Homework, Exams, Quizzes 

9. Given a random integration problem, choose the proper 
method and proceed with integration. 

1-Reinforced Homework, Exams, Quizzes 

10. Solve separable differential equations. 1-Reinforced Homework, Exams, Quizzes 
11. Integrate and differentiate hyperbolic trigonometric 

functions.. 
1-Reinforced Homework, Exams, Quizzes 

12. Approximate definite integrals using numerical integration 
techniques and solve related problems. 

1-Reinforced Homework, Exams, Quizzes 

13. Apply slicing and integration techniques to calculate 
volumes, work, hydrostatic force, arc length, and surface 
area.  

1-Reinforced Homework, Exams, Quizzes 

14. Recognize improper integrals and put them in proper form 
for determination. 

1-Reinforced Homework, Exams, Quizzes 

15. Determine if an improper integral diverges or converges 
(and if so, to what?). 

1-Reinforced Homework, Exams, Quizzes 

16. Identify and compare different types of sequences. 1-Reinforced Homework, Exams, Quizzes 
17. Determine if a sequence diverges or converges (and if so, 

to what?). 
1-Reinforced Homework, Exams, Quizzes 

18. Apply infinite series tests for convergence and divergence. 1-Reinforced Homework, Exams, Quizzes 
19. Determine the error associated with a partial sum of an 

alternating series. 
1-Reinforced Homework, Quizzes 

20. Find the interval of convergence and radius of 
convergence for a given power series. 

1-Reinforced Homework, Exams, Quizzes 

21. Generate power series representations of some functions 
from a geometric series perspective. 

1-Reinforced Homework, Quizzes 

22. Generate power series representations of some functions 
from a Taylor Series perspective. 

1-Reinforced Homework, Exams, Quizzes 

23. Recognize and manipulate important Maclaurin Series 
using differentiation, integration, and substitution. 

1-Reinforced Homework, Quizzes 

24. Find the nth degree Taylor Polynomial of a function f at a 
point a and determine the error associated with the 
estimate. 

1-Reinforced Homework, Quizzes 
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3 Review Calculus I

Recall the following derivatives:

Function sinx cosx tanx cscx secx cotx
Derivative

1. The Math Cat Posse: Eva, Archer, Periwinkle, Delilah, and Mako are trying to remember
their Calculus I as they work to differentiate the following functions. With a partner or in
small groups, describe why each cat’s solution is problematic (if at all) and find the correct
derivative.

(a) y = sec(x2) Correct Solution:

Archer’s Solution:
y′ = sec(x2) tan(x2)

Periwinkle’s Solution:
y′ = 2x sec tan(x2)

(b) f(x) = x3 tan(x) Correct Solution:

Mako’s Solution:
f ′(x) = 3x sec2(x)

1



(c) y =
1

x5
− 4

√
x− x3 + x− π2 Correct Solution:

Delilah’s Solution:

y′ =
1

x4
− (1− 3x)

3
√
x− x3 + 1− 2π

(d) k(x) =
x3

cos(x) + 1
Correct Solution:

Archer’s Solution:
k′(x) = 3x2

− sin(x)

Eva’s Solution:
k′(x) = 3x2

cosx+1 + x3 sinx
(cosx+1)2

2



2. Integrate the following functions:

a)

∫
(
1

x3
− 5

√
x+ x− 1)dx

b)

∫ 5

1

x7 − x2

x
dx

c)

∫
x5 sec2(x6)dx

d)

∫
sec2 x tanxdx

3



3. What is differentiation used for?

4. What does the derivative represent?

5. What does the integral represent?

6. Differentiate: y2 = x sin(y)− x7

7. If the position function of a particle is given by p(t) = t3 − 4t+ cos(t), find the acceleration
function.

4



4 Hyperbolic Functions

4.1 Introduction of Hyperbolic Functions

You may remember from other math classes that we can represent the points of the unit cir-
cle using parametric equations. That is, each point (x, y) on the circle can be represented by

. [We will cover this more in Calc 3.]. We can do the same with the unit
hyperbola.

Recall a hyperbola is a curve of the form
x2

a2
− y2

b2
= 1.

We can represent each point on the right half of the unit hyperbola x2 − y2 = 1 as a point:
What are these weird functions? They arise from combinting the exponential functions ex and e−x

and are analogous to trig functions.

Hyperbolic Functions
Function Notation Definition Domain Range

Hyperbolic Sine
.
.

sinh(x) (−∞,∞) (−∞,∞)

Hyperbolic Cosine
.
.

cosh(x) (−∞,∞) [1,∞)

Hyperbolic Tangent
.
.

tanh(x) (−∞,∞) (−1, 1)

Hyperbolic Cosecant
.

csch(x) (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)

Hyperbolic Secant
.

sech(x) (−∞,∞) (0, 1)

Hyperbolic Cotangent
.

coth(x) (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞)

5



Inverse Hyperbolic Functions
Function Notation Definition Domain Range

Inverse Hyperbolic Sine sinh−1(x) or arcsinh x ln(x+
√
x2 + 1) (−∞,∞) (−∞,∞)

Inverse Hyperbolic Cosine cosh−1(x) or arccosh x ln(x+
√
x2 − 1) [1,∞) [0,∞)

Inverse Hyperbolic Tangent tanh−1(x) or arctanh x 1
2
ln(1+x

1−x
) (−1, 1) (−∞,∞)

Inverse Hyperbolic Cosecant csch−1(x) or arccsch x ln( 1
x
+
√

1
x
+ 1) (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)

Inverse Hyperbolic Secant sech−1(x) or arcsech x ln( 1
x
+
√

1
x
− 1) (0, 1) [0,∞)

Inverse Hyperbolic Cotangent coth−1(x) or arccoth x 1
2
ln(1+x

x−1
) (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

Graphs of Hyperbolic Functions and Their Inverse Functions

6



Identities of Hyerbolic Functions

1) sinh(−x) =

2) cosh(−x) =

3) cosh2 x− sinh2 x =

4) sinh(a± b) = sinh a cosh b± cosh a sinh b

5) cosh(a± b) = cosh a cosh b± sinh a sinh b

6) coth2 x− 1 =csch2x

7) 1− tanh2 x =sech2x

4.2 Derivatives of Hyperbolic Functions and their Inverses

Example 4.1. Determine
d

dx
sinhx.

Example 4.2. Determine
d

dx
coshx.

Derivatives of Hyperbolic Functions

1)
d

dx
(sinhx) =

2)
d

dx
(coshx) =

3)
d

dx
(tanhx) =

4)
d

dx
(csch x) =

5)
d

dx
(sech x) =

6)
d

dx
( coth x) =

Neat! We get similar derivative relationships like we have for trig functions!

Example 4.3. Differentiate y = sinh(coshx).

7



We can derive derivatives of inverse hyperbolic functions in ways that are similar to finding deriva-
tives of inverse trig functions. That is we let y = cosh−1 x ⇒ x = cosh y and use implicit differen-
tiation and hyperbolic function identities to determine d

dx cosh
−1 x.

Derivatives of Inverse Hyperbolic Functions

1)
d

dx
(sinh−1 x) =

2)
d

dx
(cosh−1 x) =

3)
d

dx
(tanh−1 x) =

4)
d

dx
(csch −1x) =

5)
d

dx
(sech −1x) =

6)
d

dx
( coth −1x) =

Example 4.4. Differentiate y = sinh−1(2x).

4.3 Antiderivatives of Hyperbolic Functions and their Inverses

We can use our derivatives to find corresponding antiderivatives. Here are the ones you should
memorize.

1.

∫
coshxdx =

2.

∫
sinhxdx =

3.

∫
sech2xdx =

4.

∫
1√

1 + x2
dx =

5.

∫
1√

x2 − 1
dx =

6.

∫
1

1− x2
dx =

Example 4.5. Evaluate

∫
coshx

cosh2 x− 1
dx.

8



4.4 ICE – Hyperbolic Functions

1. Differentiate y = x sinh(sinx).

2. Differentiate y = cosh−1(
√
3x).

3. Evaluate

∫
ex

1− e2x
dx.

4. Evaluate

∫
ex

1 + e2x
dx.

9



5. Evaluate

∫ 1

0

1√
16x2 + 1

dx

6. Show that
d

dx
arctan(tanhx) = sech(2x)

10



5 Average Value

5.1 Net Change

Recall that definite integrals can return positive or negative values depending on whether or not
the function is above or below the x-axis.

∫ 2π

0
sinx dx =

π

2

π 3π

2

2π

-1

1

What if instead of finding the net area , we wanted to find the total area between a function f
and the x-axis?

� Subdivide [a, b] into intervals where f(x) is positive and where f(x) is negative

� Integrate over each subinterval

� Sum up the integral of each subinterval

Total area between sinx and the x-axis:

Example 5.1. Find the total area between f(x) = x3 − 4x and the x-axis on [−2, 2].

11



The Net Change Theorem: The integral of a rate of change is the net change:

This principle can be applied to many rates of change in the natural and social sciences.

Example 5.2. a) Suppose V (t) is the volume of water in a reservoir at time t. Then its derivative
V ′(t) is

b) If C(t) is the concentration of the product of a chemical reaction at time t, then C ′(t) is

c) If the rate of growth of a population is dn/dt, then∫ t2

t1

dn

dt
dt = n(t2)− n(t1)

12



5.2 Average Value of a Function

If I were to get an 80%, 78%, and 90% on my first 3 calculus exams, I can find my average exam
grade by

Finding the average value of finitely many numbers is easy. It is just:

But suppose we want to find the average value of a constantly changing function f(x) over an
interval [a, b]

y

x

Definition: Average Value of a Function: The average value of f on the interval [a, b] is
given by fave =

Example 5.3. Find the average value of g(x) = 3
(1+x)2

on the interval [1, 4].

Example 5.4. Suppose the temperature T (in degrees Celsius) of a metal bar of length 2 m depends
on position x (in meters) is given by the function T (x) = 40 + 20x(2− x).
a) Find the average temperature of the bar.

13



b) At what position(s) on the metal bar is the temperature equal to the average temperature of the
bar?

5.3 Mean Value Theorem for Integrals

Will a function always achieve its average value on [a, b]?

Defintion: The Mean Value Theorem for Integrals: If f is on [a, b], then there
exists a number c in [a, b] such that f(c) = fave =
In other words: and we can geometrically interpret this:

Example 5.5. Use your answer in Example 5.3, to determine the value c such that g(c) = gave.
Then sketch the graph of g and a rectangle whose area is the same as the area under the graph of
g.

14



Example 5.6. If f is continuous and

∫ 5

3
f(x)dx = 6, show that f takes on the value of 3 at least

once on the interval [3, 5].

15
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5.4 ICE- Average Value

1. Let f(x) = 3− x2

(a) Find the average value of f(x) on the interval [0,
√
3]. Call this value k.

(b) Sketch the graph of y = f(x) and y = k.

y

x

y

x

(c) Show that on the interval [0,
√
3], the amount of area that lies below y = f(x) and

above y = k is equal to the amount of area that lies below y = k and above y = f(x).

(d) Will the result of the previous question be true for any continuous function and its
average value on any interval? Why?
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2. Find the numbers b such that the average value of f(x) = 3x2 − 4b− 10 on the interval [0, b]
os equal to 5.
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6 Integration By Parts

Un-doing the Product Rule
Integration by substitution corresponds with the differentiation rule:
Today we will learn the “product rule” for integration. First what is our product rule?

Integration by Parts:∫
f(x)g′(x)dx =∫
u dv =∫ b

a
u dv =

Note: We usually wait until the end to add the constant of integration.

Example 6.1. Evaluate

∫ 4

1
xexdx.

Example 6.2. Evaluate

∫
x2 cos(x)dx.
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Example 6.3. Evaluate

∫
lnxdx.

Integral of Natural Log:

∫
lnxdx =

Integral of Log:

∫
logb xdx = x logb(x)−

1

ln(b)
x+ C

6.1 Strategy for Integration By Parts

What type of functions do we want to pick for our u and dv? How do you choose?

For our u: For our dv:

Helpful Acronym: LIATE
Logarithmic Inverse Trigonometric Algebraic Trigonometric Exponential

Example 6.4. Determine which functions make sense for u and for dv:

a)

∫
x23xdx b)

∫
arcsinxdx c)

∫
(x2 + 5x− 2)exdx

22



d)

∫
x sec2 xdx e)

∫
x ln(x+ 2)dx f)

∫
x4 sinhxdx

6.2 Cycling Integrals

Sometimes integration by parts seems to not be working... but it is...
Cycling integrals often occurs when both u and dv don’t change much when you differentiate or
integrate. Or when it seems like you keep getting almost the same thing OVER AND OVER Again.

Example 6.5. Evaluate

∫
ex cos(2x)dx.
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Example 6.6. Evaluate

∫
(tanx)2dx.

Example 6.7. Evaluate

∫
sin(lnx)dx.
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6.3 ICE – Integration By Parts

2 sides!

1. Evaluate

∫
x sin(3x)dx

2. Evaluate

∫
arctanxdx

3. Use integration by parts to prove
∫
xnexdx = xnex − n

∫
xn−1exdx.

Then use it to evaluate
∫
x3exdx.
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4. Evaluate

∫
x

x2 + 9
dx

5. Can I use any of my methods for integration to evaluate

∫
4x+ 10

x2 + 2x− 8
dx? Why?

6. Can I use any of my methods for integration to evaluate

∫
tan2 xdx? Why?

7. Evaluate

∫ 2

0
ln(5x)5xdx [Hint: Careful, do we need integration by parts?].

8. Evaluate

∫
2
√
xdx [Hint: Substitute first ].
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7 Integration Techniques for Higher Trig Functions

Suppose we want to evaluate
∫
tan2 xdx. What can we do?∫

tan2 xdx

Often when we have integrals with higher powers of trigonometric functions, we need to use
trigonometric identities to solve them.

7.1 Trig Identities

Here are some some of the main identities we will use.

Basic Identities
sin2 θ + cos2 θ = 1
1 + tan2 θ = sec2 θ
1 + cot2 θ = csc2 θ

Power reduction formulas

sin2 θ =
1

2
(1− cos(2θ))

cos2 θ =
1

2
(1 + cos(2θ))

Double-angle formulas
sin(2θ) = 2 sin θ cos θ
cos(2θ) = cos2 θ − sin2 θ
= 1− 2 sin2 θ
= 2 cos2 θ − 1

Addition Formulas

sin(θ ± ϕ) = sin θ cosϕ± cos θ sinϕ
cos(θ ± ϕ) = cos θ cosϕ∓ sin θ sinϕ

sin(A) cos(B) = sin(A−B)+sin(A+B)
2

sin(A) sin(B) = cos(A−B)−cos(A+B)
2

cos(A) cos(B) = cos(A−B)+cos(A+B)
2

7.2 Strategy for Integrating Powers of Sine and Cosine

Strategy for Evaluating

∫
sinn x cosm xdx:

Case 1: If the power of cosine is odd, save one cosine factor and use
Then use substitution of w = sinx. See Example 1.

Case 2: If the power of sine is odd, save one sine factor and use
Then use substitution of w = cosx. See Example 3.

Case 3: If the both powers of sine and cosine are even,
use our Power Reduction Formulas: sin2 x = 1

2(1− cos(2x)) or cos2 x = 1
2(1 + cos(2x))

**Notice except for Case 3, we are preparing our integral for substitution by pulling out our substi-
tution for dw.
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Example 7.1. Evaluate

∫
cos3 x sin−2 xdx.

Example 7.2. Evaluate

∫
cos4 xdx.

Example 7.3. Evaluate

∫
sin5 xdx.
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7.3 Strategy for Integrating Powers of Tangent and Secant

Now suppose we have an integral of the form

∫
tann xsecmxdx, what derivatives could we see in

this product?

Strategy for Evaluating

∫
tann x secm xdx:

Case 1: If the power of tangent is odd and you have at least one secant,
save one secx tanx factor and use
So that the rest of the integral is only in terms of secant (except for our one saved secx tanx factor).
Then use substitution of w = secx. See Example 5.

Case 2: If the power of secant is even, save one sec2 x factor and use
So that the rest of the integral is only in terms of tangent (except for our one saved sec2 x factor).
Then use substitution of w = tanx.

If Case 1 and Case 2 don’t apply, you need to be creative (e.g.

∫
tan2 xdx) or use substitution

(e.g.

∫
tanxdx).

Example 7.4. Evaluate

∫
tan3 x secxdx.

Example 7.5. Evaluate

∫
secxdx.
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7.4 Strategy for Integrating Powers of Cotangent and Cosecant

Strategy for Evaluating

∫
cotn x cscm xdx:

*Note these are analogous to tangent and secant.

Case 1: If the power of cotangent is odd and you have at least one cosecant, save one cscx cotx
factor and use
So that the rest of the integral is only in terms of cosecant (except for our one saved cscx cotx
factor). Then use substitution of w = cscx.

Case 2: If the power of cosecant is even, save one csc2 x factor and use
So that the rest of the integral is only in terms of cotangent (except for our one saved csc2 x factor).
Then use substitution of w = cotx.

If Case 1 and Case 2 don’t apply, you need to be creative. (for example

∫
cscxdx)

Example 7.6. Evaluate

∫
cot4 x csc4 xdx

7.5 Using Addition Trigonometric Properties

When we have integrals of the form

∫
sin(ax) cos(bx)dx,

∫
sin(ax) sin(bx)dx,or

∫
cos(ax) cos(bx)dx,

we need to use the addition properties of trig functions.

Example 7.7.

∫
sin(8x) cos(3x)dx
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7.6 ICE – Higher Trig Techniques for Integration

2 sides!

1. Evaluate

∫
4x3 tan(2x4) sec3(2x4)dx

(What do you do first?)

2. Evaluate

∫
(1 + sin(3x))2dx

31



3. Evaluate

∫
sin3 x

√
cosxdx

4. Evaluate

∫
cosx cot2 xdx
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8 Inverse Trigonometric Substitution Techniques for

Integration

How would we evaluate
∫

x√
x2+4

dx ?

How about
∫ 1√

x2 + 4
dx?

How about
∫ 1√

3− x2
dx?

What problem do we have when we try to evaluate

∫
1

x2
√
x2 + 4

dx ? or

∫
1

(4− x2)
3
2

dx

In this section we are going to again use the main trig identities used to simplify trigonometric
integrals from the previous section.
These are:

Which form does 4− x2 “somewhat” look like?

Let’s consider the following substitution:

Example 8.1. Use this substitution to evaluate

∫
1

(4− x2)
3
2

dx.

This technique is called .
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8.1 Strategy for Inverse Trigonometric Substitution

Case 1: We see the expression
√
a2 + x2, we use the substitution

(with the restricted domain [−π
2 , π2 ]) Then we will use the identity: 1 + tan2 θ = sec2 θ

picture:

Case 2: We see the expression
√
a2 − x2, we use the substitution

(with the restricted domain [−π
2 , π2 ]) Then we will use the identity: 1− sin2 θ = cos2 θ

picture:

Case 3: We see the expression
√
x2 − a2, we use the substitution

(with the restricted domain [0, π] or [0, π2 ) ∪ [π, 3π2 ) )
Then we will use the identity: sec2 θ − 1 = tan2 θ
picture:

Note: This method is usually used for integrals with
√
a2 + x2,

√
a2 − x2,

√
x2 − a2, but it can be

also used for integrals with a2 + x2, a2 − x2, x2 − a2 or other variations.)

Steps for Inverse Trig Substitution:

1. Look for the easy substitution or an inverse trig function you recognize.

2. Substitute for x picking either Case 1, 2, or 3 (see above).

3. Rewrite integral in terms of θ and solve integral.

4. Substitute answer back in terms of x. Note sometimes you need to use trig identities and/or
the triangle for this.
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In this section, assume all domains are nice if not otherwise noted.

Example 8.2. Evaluate

∫ 2

1

1

x2
√
x2 + 4

dx

Example 8.3. Evaluate

∫
1√

3− x2
dx For x ∈ (−

√
3,
√
3).
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Example 8.4. Evaluate

∫ √
9− x2dx for x ∈ (−3, 3).
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Example 8.5. Evaluate

∫
1√

x2 + 2x− 3
dx For x ∈ (1,∞).
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8.2 ICE – Inverse Trig Substitution

2 sides!

1. Evaluate

∫
1

(x2 + 1)
3
2

dx.

2. Evaluate

∫
1

x2
√
5− x2

dx for x ∈ (1, 2).
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3. Can we approach the integrals I1 =
∫ x+ 1

x2 + 2x+ 3
dx I2 =

∫ x+ 1

x2 + 4x+ 3
dx and I3 =∫ x+ 1

x2 + 4x+ 5
dx using any of our methods of integration thus far? Explain.

4. Evaluate

∫
x− 2√
x2 + 1

dx. Hint: Split the integral up into a sum. You should not need to use

inverse trig substitution unless you want to.
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9 Integration Using Partial Fractions

9.1 Partial Fractions

Today we will discuss a method of integration for rational equations in which substitution may not
help us.

To start, how would we add
3

x− 2
+

1

x+ 4
=

Now suppose we were asked to evaluate

∫
4x+ 10

x2 + 2x− 8
dx

Suppose we were given
4x+ 10

x2 + 2x− 8
. How do we find two simple fractions

(called ) whose sum is
4x+ 10

x2 + 2x− 8
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9.2 Partial Fractions Procedure:

Given

∫
R(x)

Q(x)
dx (and using simple substitution or algebra techniques won’t work).

Step 1: Make sure the (degree of R(x)) < (degree of Q(x)).

If it isn’t, use polynomial division so that we can write the rational expression/partial fraction decomposition

as
R(x)

Q(x)
= S(x) +

R′(x)

Q(x)
with degR′(x) < deg Q(x). (This is like writing 10

7 = 1 + 3
7 )

Step 2: Factor the denominator Q(x) into linear factors and non-factorable

quadratic factors (complex roots with determinant b2 − 4ac < 0). See note at bottom of page.

Step 3: Form the partial fraction depending on the following cases:

Case 1: Q(x) can be factored into a product of non-repeated linear factors

e.g Q(x) = (x− 2)(x− 3)(x).

The partial fraction decomposition is
R(x)

Q(x)
=

Case 2: Q(x) can be factored into a product of linear factors, but at least one factor is repeated

e.g: Q(x) = (x− 3)(x− 2)3

The partial fraction decomposition is
R(x)

Q(x)
=

KEY: We have a partial fraction for each power of (x− r) up & including the mth power!

Case 3:The factored form of Q(x) has a non-repeated, non-factorable quadratic factor

e.g Q(x) = (x− 3)(x2 + 3)(x2 − x+ 1)

The partial fraction decomposition is
R(x)

Q(x)
=

KEY: We have an Aix+B instead of an Ai for the numerator of the quadratic factor.

Case 4: The factored form of Q(x) has a repeated, non-factorable quadratic factor

e.g Q(x) = (x− 3)(x2 + 3)2

The partial fraction decomposition is
R(x)

Q(x)
=

KEY: This is a combination of Case 2 and Case 3.

Step 4: Clear denominators. (Multiply both sides by Q(x))

Step 5: Solve for coefficients (the A’s, B’s, C’s, etc).

Note: This procedure is theoretically possible because every polynomial with real coefficients can be factored into linear factors and irreducible

quadratic factors. Example: x5 + 3x4 + 4x3 + 12x2 + 4x + 12 = (x + 3)(x2 + 2)2. This answers the question, “Why do we stop at Case 4 and

not have irreducible cubics, quartics, etc?” Even though this factoring is theoretically possible, it isn’t always easy to factor a polynomial. (It was

shown in the 1800’s that polynomials of degree 5 or higher cannot be solved, in general, by using only arithmetic and square roots).
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Example 9.1. Evaluate

∫
1

x(x2 + 1)
dx

43



Example 9.2. Evaluate

∫
2x2 − 7x− 24

x2 − 4x− 12
dx
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Example 9.3. Evaluate

∫
dx

ex + e2x
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9.3 ICE – Partial Fractions

1. Explain why the coefficients A and B cannot be found if we set x2

(x−4)(x+5) =
A

x−4 + B
x+5

2. True or false: The “easiest way” to evaluate

∫
6x+ 1

3x2 + x
dx is with partial fractions.

3. Evaluate

∫
x+ 1

x(x2 + 4)
dx.
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4. Evaluate

∫
1

x− 3
√
x
dx Hint: Use the substitution x = u3.
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10 Approximating Integrals Using Numerical Methods

10.1 Approximating Integrals Review

We have been discussing sophisticated integration techniques. Unfortunately sometimes we have
functions that aren’t derivatives of a nice function. For example, the Gaussian function f(x) = e−x2

is not the derivative of any elementary function. That is,
∫
e−x2

dx does not exist! Other examples

include the elliptical integral:
∫ √

1− x4dx,
∫
ln(ln(x))dx,

∫ ex

x
dx,

∫
ee

x
dx,

∫ 1

lnx
dx,

∫ sinx

x
dx,∫

sin(x2)dx, and
∫ √

x cos(x)dx.

But we can approximate
∫ b
a e−x2

dx for finite limits and also approximate the function using some-
thing called Taylor Polynomials (coming soon to a Calculus class you are in!)

Furthermore, the improper integral
∫∞
−∞ e−x2

dx can be evaluated using multivariate calculus and
polar coordinates and shown to equal

√
π. (You can look forward to this in Calculus III!!) We will

talk about crazy improper integrals later on in Calculus II!

Recall, in Calculus I, we discussed how we could approximate the area under a curve using
.

We usually use end points of the subintervals to find the height of our rectangles.1 We also dis-
cussed how we could use just any point in the subintervals or the midpoints of subintervals.
When we use the left endpoint of our intervals to find the height of our rectangles, this is called a
Left Riemann Sum.
When we use the right endpoint of our intervals to find the height of our rectangles, this is called
a Right Riemann Sum.
When we use the midpoint of our intervals to find the height of our rectangles, this is called a
Midpoint Approximation or the Midpoint Rule.

We are going to review the Midpoint Rule and introduce two other techniques.

1Image taken from suggested textbook Stewart’s Calculus 8th edition, ©2016
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10.2 Midpoint Rule

Procedure for Using Midpoint Rule:

1. Divide the interval [a, b] into n subintervals of equal width: ∆x =
b− a

n
Let x0 = a < x1 < ... < xn = b where xi = a+ i ∗∆x

2. Find corresponding y values. Let yi = This gives the height of our rectangles.

3. Sum up the areas of the rectangles.

Example 10.1. Use the Midpoint Rules to approximate

∫ 5

1
x2dx using 2 rectangles.
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10.3 The Trapezoid Rule

The Area of a Trapezoid =

Procedure for Using Trapezoid Rule:

1. Divide the interval [a, b] into n subintervals of equal length: h = ∆x =
b− a

n
Let x0 = a < x1 < ... < xn = b where xi = a+ i ∗∆x

2. Find corresponding y values. Let yi = f(xi) This gives the bases of our trapezoids.

3. Sum up the areas of the trapezoids.

Trapezoid Rule:∫ b

a
f(x)dx ≈ ∆x[

1

2
f(x0) + f(x1) + f(x2) + ...f(xn−1) +

1

2
f(xn)]

or ≈ ∆x
2 [f(x0) + 2f(x1) + 2f(x2) + ...2f(xn−1) + f(xn)]

where h = ∆x =
b− a

n

Example 10.2. Use the Trapezoid rule to approximate

∫ 8

0
xexdx using 4 trapezoids.
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10.4 Simpson’s Rule

Now we will use parabolas instead of trapezoids or rectangles. (Woo!)

The area under the parabola determined by
(x0, y0), (x1, y1), and (x2, y2) is

Procedure for Using Simpson’s Rule:

1. Divide the interval [a, b] into n subintervals of equal length. n MUST be EVEN!:

∆x =
b− a

n
Let x0 = a < x1 < ... < xn = b where xi = a+ i ∗∆x

2. Find corresponding y values. Let yi = f(xi) This gives points of the parabolas.

3. Sum up the areas of the parabolas.

Simpson’s Rule:∫ b

a
f(x)dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4)...4f(xn−1) + f(xn)]

where ∆x =
b− a

n
and n is even.

Simpson’s rule is related to the Trapezoid and Midpoint Rule:

Example 10.3. Use Simpson’s rule to approximate

∫ 8

0
xexdx using n = 4.
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10.5 Approximating Error in Numerical Methods

The error in an approximation is the amount that needs to be added to the approximation to make
it exact.

The error in the Midpoint Rule is EM = |
∫ b
a f(x)dx−Mn|

The error in the Trapezoid Rule is ET = |
∫ b
a f(x)dx− Tn|

The error in Simpson’s Rule is ES = |
∫ b
a f(x)dx− Sn|

Error Bounds: Suppose |f ′′(x)| ≤ K for a ≤ x ≤ b.

Then |EM | < K(b−a)3

24n2 and |ET | < K(b−a)3

12n2

Suppose |f (4)(x)| ≤ K for a ≤ x ≤ b. Then |ES | < K(b−a)5

180n4

Example 10.4. Find the maximum error in using S6 to calculate

∫ 3

1
cos(2x)dx.

Example 10.5. a) Find the maximum error in our trapezoid approximation, T4 for

∫ 8

0
xexdx

b) How large should we take n to be in order to guarantee that our trapezoid approximation is within
0.1?
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10.6 ICE – Numerical Approximation

Recall there is no elementary indefinite integral for the Gaussian function f(x) = e−x2
. This

function shows up in many applications including statistics and quantum mechanics. Let’s use
numerical methods to approximate the Gaussian Function over the interval [1, 13]

Given

∫ 13

1
e−x2

dx

a) Set up the sums to find T4 and S4

Turn over!
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b) How large do we have to choose n so that Tn is accurate to within 0.001?
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11 Strategy for Integration

So many integration techniques! How do we choose?!?!
Actually, it seems like we have a lot of choices, but most are just variations of .
My best suggestion for gaining intuition about integration strategy is

Gameplan for integration:

1. Do I recognize the integrand as a function I know the antiderivative for? Check for derivatives
of arctanx, arcsinx, arctanhx etc.

2. Can I use a basic substitution? Often you can set w as an “inside” function or the whole
denominator (so our integral looks like 1

w ). Be on the lookout for “inside” functions that
have derivatives hanging out in the integrand or if you have a linear expression (constant
derivative -yay!) inside another function(eg if you have n

√
ax+ b). And remember you can

set w as a sum of terms.

3. Can I simplify the integrand to make my life easier? (Expand a binomial, find a common
denominator, use polynomial division, rewrite in terms of sinx, cosx?)

4. Are there only higher powers of trig functions? If so, use higher trig substitution and/or trig
identities.

5. Do I see a version of this expression
√
x2 + a2,

√
x2 − a2,

√
a2 − x2? Use Inverse Trig sub-

stitution You may need to Complete the Square!

6. Do I have integrand that is a rational expression? Then I may be able to use partial fractions.

7. Can I use integration by parts? Often you will see a product of functions or a “loner” like
lnx, arctanx, etc. If you have a product, one function will be something you cannot integrate
right away but can differentiate, and the other is a function you can integrate.

8. Remember often you must use more than one method. (Usually one of these methods is
substitution)

Still stuck? Then try again using a different method. Most of the time you need a creative substi-
tution as a primary step before seeing a suitable method. Or you need to try integration by parts.
Go back and see if completing a square will help you. Also beaware of “cycling integrals!”

Last ditch effort: Think back and try to relate the integral to another integral you may have done
in class, homework, or ICE. This is where practice really really helps!
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Example 11.1. For each integral, suggest one approach that you think is appropriate to evaluate the integral.

a)

∫
x2 − x

2x3 − 3x2 + 2
dx

c)

∫
2x2

x2 − 2x+ 8
dx

e)

∫
sin3 x cos5 xdx

g)

∫
x cscx cotxdx

i)

∫
arcsinxdx

k)

∫
tan3 x sec5 xdx

b)

∫
dx√

4x2 + 1

d)

∫
x√

1− x2
dx

f)

∫
1

4x2 − 9
dx

h)

∫
3x cos(2x)dx

j)

∫
1√

1− x2 arcsinx
dx

l)

∫
3x− 1

x+ 2
dx
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Interesting Substitutions:

m)

∫
lnx

x
√
1 + (lnx)2

dx n)

∫
1

1 + ex
dx

11.1 Interesting Examples

Example 11.2. Evaluate

∫
ex+exdx

Example 11.3. Evaluate

∫
(1 + 3

√
x)4dx (Neat Substitution Technique!)
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Example 11.4. Evaluate

∫
arctanx

x2
dx

Example 11.5. Evaluate

∫
sec(x) tan(x)

sec2(x)− sec(x)
dx
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11.2 ICE – Review of Integral Techniques

1. I have sinn x, or sinn x cosm x, and n is odd like
∫
sin3 x cos4 xdx. What do I do?

2. I have cosm x, or sinn x cosm x like
∫
sin4 x cos3 xdx, and m is odd. What do I do?

3. I have sinn x, cosm x, or sinn x cosm x, but only even powers like
∫
sin2 x cos2 xdx. What do

I do?

4. I have tann x secm x, with at least 1 value of each and n is odd like
∫
tan3 x sec3 xdx. What

do I do?

5. I have tann x secm x, with at least 1 value of each and m is even like
∫
sec4 x tan2 xdx. What

do I do?

6. I have tan2 x without any even powers of secx or cot2 x without any even powers of cscx like∫
tan2 xdx. What do I do?

7. I have a bunch of ex, ax, or enx (usually where normally I would have x and xn’s) like∫ 1

ex + e2x
dx. What can I do?

8. I have a product of two or more functions like like
∫
x sinxdx or

∫
x lnxdx. What can I do?

9. I have a product, one factor is a value of x and the other is a function I can’t integrate right
away like

∫
x arcsinxdx. What can I do?
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10. I have a product, I can integrate one part of product (usually powers of trig functions), but
the problem is there is an x term which makes my life a bit difficult like

∫
x tan2 sec2 xdx

What can I do?

11. I have a version of square root
√
x2 + a2,

√
x2 − a2,

√
a2 − x2. First I look for a version of

Or what can I do?

12. I have a version of square root
√
x2 ± bx+ a2,

√
x2 ± bx− a2,

√
a2 ± bx− x2. What can I

do?

13. I have integrand that is a rational expression like
∫ x+ 2

x2− 5x+ 6
dx. What can I do? (some-

times there are 2 approaches)

14. I have a linear “inside” function like n
√
ax+ b) like

∫ √
3x+ 5dx. What can I do?

15. I have a term like
∫
(1 + cos(2x))2dx or

∫
(1 + w3 + 6w)(w3)dx. What can I do?

16. I have a fraction with trig functions like
∫ tanx

secx
dx or

∫ sinx

cos2 x
dx. What can I do?

17. I have a function with a sum in the numerator like
∫ x+ 5√

1− x2
dx or

∫ x2 + 6√
x2 + a2

dx What

could I do?

18. I have only 1 function and I don’t know how to integrate it like
∫
arctanx. What can I do?

62



12 Volumes of Rotations

12.1 Disk Method

We are able to find the area between curves. In this section, we learn how to calculate volume of
solids we make by rotating these areas around lines. First let’s review... What is the volume of a
cylinder?

The “typical element” is a of radius
and height . So the vol-

ume is .

We can find the volume of the solid by V =

This method is called the Disk Method because the “typical element” we use a solid disk.
It may be better to memorize the general idea of the Disk Method:

1. Draw a typical element.

2. Write the volume of a typical element.

3. Find bounds (the limits of integration).

4. Write and solve integral.

Example 1: Set up an integral that finds the volume of the region bounded by y = 1− (x− 2)2

and y = 0 rotated around the x-axis
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12.2 Washer Method

What if the region is bounded by 2 curves?

The volume of a “typical element” is

We can find the volume of the solid by V =

This method is called the Washer Method because the “typical element” we use a washer.
Key Point: The variables and limits are determined by the typical element, NOT where the ro-
tation is!!!

Example 2: Set up the integral used to find the volume of rotating the region bounded by y = 5
and y = x2 + 1 rotated around the x-axis.
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Example 3: a) Set up the integral used to find the volume of the region bounded by y = 1−(x−2)2

and y = 0 rotated around y = −1.

b) Now find the volume of the same region rotated around y = 3.
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Example 4: a) Set up the integral used to find the volume of the region bounded by y = x
3
4 ,

x = 16, y = 0 rotated around the y axis.

b) Now find the volume of the same region rotated around x = −1.

Notes:

� Notice that when we use dy, the functions in the integrand are functions of y (x = x(y)).

� When using functions of y, we subtract: the right curve - left curve to find the correct
(positive) “height” of our “typical element.” This is analogous when we subtract: the top
curve - bottom curve for functions of x.

� Think about which direction is positive on the axis; associate + with “up”/“top.”
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12.3 Cylindrical Shells Method

In this section, we learn another method to calculate the volume of solids we make by rotating
these areas around lines. Consider the volume of f(x) rotated around the y-axis.

The “typical element” is a or ring
of radius , height , depth

. Imagine cutting the ring somewhere
and “unrolling” it to form a rectangular prism.

We can find the volume of the solid by V =

What if the region is bounded by 2 curves?

The volume of a “typical element” is

We can find the volume of the solid by V =
This method is called the Shell Method because the “typical element” we use is a solid shell.
Notice the typical element using the Shell Method is parallel to the axis of rotation! And the
typical element using the Disk/Washer Method is Perpendicular to the axis of rotation!

Recall General Idea of Any Volume Method:
1) Draw a typical element.
2) Write the volume of a typical element.
3) Find bounds (the limits of integration).
4) Write and solve integral.
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Example 5: a) Use the shell method to find the volume of the region bounded by
y = 1− (x− 2)2 and y = 0 rotated around the y-axis.

b) Now find the same volume using the washer method.
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Example 6: a) Use the shell method to find the volume of the region bounded by
y = x2, y = x, rotated around the x = −1.

b) Now find the volume for the same region rotated around x = 5.
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Example 7: Consider the region bounded by y =
√
x and x = 4, and the x-axis.

a) Use both methods to set up the integral to find the volume of rotating the region around the
x-axis.

b) Use both methods to set up the integral to find the volume of rotating the region around the
y-axis.
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Example 8: Identify the axis of rotation for the following volumes (you can compute them later
for practice, if you like).

a)

∫ 2

0
π((4y)2 − (y3)2)dy

c)

∫ 1

0
2π(2− x)(x− x2)dx

b)

∫ 2

0
(2πx · x3)dx

d)

∫ 1

0
π((2 + y)2 − (2 + y2)2)dy

71



72



12.4 ICE – Volumes

For the following questions, find the equation for the volume of the solid formed by the region
bounded by x = y2 and x = 2y rotated around the following lines. DO NOT EVALUATE THE
INTEGRALS!!! Just set them up.

1. Use the Disk/washer method to set up the integral of the region rotated around the y-axis.

2. Use the Shell method to set up the integral of the region rotated around the y-axis.

3. Use the Disk/washer method to set up the integral of the region rotated around the x-axis.

4. Use the Shell method to set up the integral of the region rotated around the x-axis.
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5. Use the Disk/washer method to set up the integral of the region rotated around x = −1.

6. Use the Shell method to set up the integral of the region rotated around x = −1.

7. Use the Disk/washer method to set up the integral of the region rotated around y = −1.

8. Use the Shell method to set up the integral of the region rotated around y = 5.

9. Use the Shell method to set up the integral of the region rotated around y = −1.

74



10. Use the Disk/washer method to set up the integral of the region rotated around y = 5.

11. Use the Shell method to set up the integral of the region rotated around x = 5.

12. Use the Disk/washer method to set up the integral of the region rotated around x = 5.
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13. Set up the integral for the region bounded by y = −x2 +3x− 2 = −(x− 2)(x− 1) and y = 0
rotated around the y-axis.

14. Use the Disk/Washer Method to set up the integral for the region bounded by x = −y2 − 2,
x = y2 − 1, y = −1, y = 1 rotated around the y-axis.

15. Use the Shell Method to set up the integral for the region bounded by f(x) = −x2 + 2x =
−x(x− 2) and g(x) = x2 − 2x = x(x− 2) rotated around the y-axis.
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13 Arc Length

It is easy to calculate distance when someone is traveling in a straight line:

But often this is not the case. So it is helpful to know how to calculate the length of a curve. We
will just give an idea of the derivation for the Arc Length Formula. See your text for details.

Mean Value Theorem: If f is continuous on [a, b],

then there is a c in (a, b) such that f ′(c) =
f(b)− f(a)

b− a
.

Arc Length Formula:
If f ′ is on [a,b], then the length of the curve y = f(x) over [a,b] is L=

Example 13.1. Find the arc length of y = 3 lnx− x2

24 over 1 ≤ x ≤ 6.
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Remember sometimes when we were finding the area under a curve, it was helpful not to integrate
with respect to x, but instead with respect to . We have a similar situation here.

Arc Length for the curve x = g(y) (g′ con-
tinuous) over x ∈ (a, b) and y ∈ (c, d) is

Arc Length Function:By the Fundamental Theorem of Calculus, we can generalize the length
of a curve so that we a function that represents the length of a curve.
For a curve with initial point (a, f(a)), The arc length function is s(x) =

∫ x
a

√
1 + [f ′(t)]2dt

Example 13.2. Set up an integral to find the length of the curve of x =
√
1− y2 for −1

2 ≤ y ≤ 1
2 .

Example 13.3. Find the length of the curve y = x
2
3 between x = 0 and x = 8.
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13.1 ICE – Arc Length

Suppose we want to find the length of the curve y = f(x) = ln(x+
√
x2 − 1) on the interval [1,

√
2]

[Notice this function is f(x) =arccoshx.] Hint: USE THIS FACT for parts a and c.
a) Calculate f ′(x). What problem do we have?

b) How can we deal with this problem?

c) Find f−1(x) and use it to write our function in the form x = g(y). Hint: There is a quick way
to do this and a long way.

d) Use x = g(y) to calculate the arc length.
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14 Surface Area

14.1 Deriving Surface Area of a Revolution

Earlier, we learned how to calculate the volume of solids we make by rotating these areas around
lines. Now we are going to learn how to calculate the of these solids. First
let’s recall the how to find the area of a circular sector

Thus the lateral surface area of our cone is
What about a more complicated example? Say perhaps a section of the circular cone. Which makes
us have more of an Abu the Monkey’s hat instead of a dunce’s hat.

14.2 Surface Area of a Revolution about x-axis

The “typical element” is a section of a
with slant length =

and the radius is

Thus the surface area of our typical element is

Important: When rotating around the x-axis we will always have: 2π or 2π
BUT, when finding our length (arc length) we can do this either with respect to x or y.
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Surface Area when rotating about x-axis:
Integrating with respect to x: The surface area obtained by rotating the curve y = f(x) over
a ≤ x ≤ b about the x-axis is S=

Integrating with respect to y: The surface area obtained by rotating the curve x = g(y) over
c ≤ y ≤ d about the x-axis is S=

Example 14.1. Setup an integral representing the surface area obtained by rotating x =
y2

9
+ 2

about the x-axis for 3 ≤ x ≤ 6.

Example 14.2. Set up an integral representing the surface area obtained by rotating x =
y2

9
+ 2

about the x-axis for 3 ≤ x ≤ 6 but integrate with respect to x.
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14.3 Surface Area of a Revolution about y-axis

The “typical element” is a section of a
with slant length =

and the radius is

Thus the surface area of our typical element is

Important: When rotating around the y-axis we will always have: 2π or 2π
BUT as before, when finding our length (arc length) we can do this either with respect to x or y.

Surface Area when rotating about y-axis:
Integrating with respect to x: The surface area obtained by rotating the curve y = f(x) over
a ≤ x ≤ b about the y-axis is S=

Integrating with respect to y: The surface area obtained by rotating the curve x = g(y) over
c ≤ y ≤ d about the y-axis is S=

Example 14.3. Set up an integral that finds the surface area obtained by rotating x =
√
y − 1

about the y-axis for 1 ≤ y ≤ 2

Example 14.4. Find the surface area obtained by rotating y = 1+x2 about the y-axis for 2 ≤ x ≤ 3,
and integrate with respect to y.
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Guidelines for finding Surface Area from a curve rotated about either axis:

1. Sketch the general idea of the curve.

2. Determine if we have 2πx (or 2πg(y)) or 2πy (or 2πf(x)).

3. Decide which variable you want to integrate with respect to and take the corresponding
version of the arc length formula

√
1 + (f ′(x))2 or

√
1 + (g′(y))2

4. Rewrite 2πx in terms of y if you are integrating with respect to y. And rewrite 2πy in terms
of x if you are integrating with respect to x.

5. Make sure you have to correct limits of integrating.

6. Calculate the integral.
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14.4 ICE – Surface Area

1. Set up an integral representing the surface area obtained by rotating y = 1 + ex about the
x-axis for 0 ≤ x ≤ 1

2. Set up an integral representing the surface area obtained by rotating y = 1 + ex about the
x-axis for 0 ≤ x ≤ 1 but integrate with respect to y.

3. Set up an integral representing the surface area obtained by rotating y = 1 + ex about the
y-axis for 0 ≤ x ≤ 1

4. Set up an integral representing the surface area obtained by rotating y = 1 + ex about the
y-axis for 0 ≤ x ≤ 1 but integrate with respect to y.
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5. Set up an integral representing the surface area obtained by rotating the region bounded by
y = 1 + ex and y =

√
x for 0 ≤ x ≤ 1 about the line y = −1

6. Set up an integral representing the surface area obtained by rotating the region bounded by
y = 1 + ex and y =

√
x for 0 ≤ x ≤ 1 about the line y = −1 integrating with respect to y.
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15 Using Integrals to Calculate Work and Hydrostatic

Force

15.1 Work with constant Force

When we say something is work, usually we mean the total amount of effort we need to put forth to
complete a task. In physics it has a more technical meaning that depends on the idea of .
What is a force? We often think of it as a stress on an object, a or on an
object.
Example: Newton’s Second Law of Motion:

Note: We will assume the acceleration due to gravity is g = 9.8 m/s2

If we have constant mass and acceleration, the force F is also a constant and the work done is
defined to be :

Force F= and Density ρ = so Mass m =

Units:

Metric:
Mass is measured in kilograms (kg)
Displacement is measured in meters (m)
Time is measured in seconds (s)
Force is measured in Newtons (N)
Work is measured in Joules (J)

US:
Mass is measured in pounds (lbs)
Displacement is measured in feet (ft)
Time is measure in seconds (s)
Force is measured in pounds (lbs)
Work is measured in foot-pounds (ft-lbs)

Example 15.1. How much work does Harriet do when she lifts a 20 kg dumbbell a height of 3
meters?

Example 15.2. How much work does Barry do when he lifts a 30 lb weight 7ft off the ground?
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15.2 Work with varying Force

So we can determine the work done when we have a constant force (see examples 1-2). But what
do we do when the force is varying?

Suppose I have an object moving along the x-axis and I have a varying force. So I can write my
force as a function of x, say, .

Common Idea: Notice regardless if we are calculating area, volume, surface area, or work,
we slice small enough so that we can convert the problem to its simplest form and calculate the
area/volume/surface area/work of the typical slice. If we slice small enough in this example, we
can treat the force as a constant and find the work on a typical slice and then add up all the parts.

Definition: The work done in moving an object from a to b of a force f(x) is W = .
Sometimes we are given the force function, but often we have to create the force function.

Example 15.3. Suppose an object is located a distance x feet from the origin has a force of x3 +1
acting on it. How much work is done in moving it from x = 1 to x = 2 ft.

Hooke’s Law: The force required to maintain a spring stretched x units beyond its natural
length is proportional to x:

Note: k is a constant which includes g called the constant & we assume x
is not
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Example 15.4. A spring has a natural length of 20 cm. If a 25-N force is required to keep it
stretched to a length of 30 cm. How much work is required to stretch it from 20 cm to 24 cm?
[Careful of units!]

Note: Hooke’s Law is nice because it gives us the general form for the varying force. In the next
problems, we have to find the force function.

Example 15.5. a) A 800 lb box of baby chinchillas is at the bottom of a 500 ft pit. Luckily you
were able to attach a rope that weighs 2 lb/ft to the top of the box. How much work will you have
to do to save the baby chinchillas (bring them to the top)?

b) Notice that our first step was to draw a picture and set up a coordinate system (set x = 0
somewhere). Sometimes other professors/Webassign will use a different convention than Dr. Harsy.
So let’s use a different coordinate system for this.
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Example 15.6. a) Suppose a tank has a shape of triangular prism with a height of 4 ft and length
of 6 ft and a width of 2 ft with a 1 foot spout. Suppose it is completely filled with water. Set up an
integral to represent the work required to empty the tank by pumping all the water out of the spout.
Use the fact that the weight of water is 62.5 lb/ft3.

b) Answer the same question as part a. Only now suppose the tank is only filled up to a height of
3 ft.
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15.3 Hydrostatic Force

We can also use methods similar to calculating work to calculate the force we feel due to water
pressure.

Remember Force F= and Density ρ = so Mass m = & V=

When we swim under water, the water above us has a force on us. We feel “pressure” we define
pressure P =

That is Pressure = × × .
Our units for pressure are N/m2 or a Pascal. Sometimes we use kPa (kilopascal).

Fact 1: The density of water is ρ = 1, 000 kg/m3 or 62.5 lb/ft3

Fact 2: The pressure at any point in a liquid is the same in all directions.
Fact 3: The pressure in any direction at a depth d in a fluid with density ρ is P =
Fact 4: If we have a constant pressure P acting on a surface with area A. Then the hydrostatic
force that acts on the area is F =

Careful, if the pressure varies with the depth, then we have to set up an integral resulting from
taking the limit of a Riemann Sum of the Force at each depth.

Example 15.7. A tank is 4 meters wide, 5 meters long, 3 meters high and contains a liquid with
density 800 kg/m3 to a depth of 2 meters.
a) Find the hydrostatic force on the bottom of the tank.

b) Set up an integral to find the hydrostatic force on one end of the tank.
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Example 15.8. a) Set up an integral that expresses the hydrostatic force against one side of the
vertical plate that is submerged in water with the shape indicated by the picture below.

b) Now suppose the same plate is floating 1 ft above the water. Set up an integral that calculates
the hydrostatic force for this situation.
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15.4 ICE – Work and Hydrostatic Force

1. Set up an integral that expresses the hydrostatic force against one side of the vertical plate
that is submerged in water with the shapes indicated by the pictures below.

a) b)

2. Suppose a tank has a shape of a sphere with a radius of 3 ft with a 1 foot spout. Suppose
it is completely filled with water. Set up the integral used to find the work required to
empty the tank by pumping all the water out of the spout. Use the fact that the weight of
water is 62.5 lb/ft3. Hint: Set x = 0 at the diameter.
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3. A chain lying on the ground is 10m long and its mass is 80 kg. Set up the integral to
determine how much work is required to raise one end of the chain to a height of 6 meters?
Use g = 9.8 m/s2.

4. A trough is filled with a liquid of density 800 kh/m3. The ends of the trough are equilateral
triangles with sides 8 m long and vertex at the bottom. Set up an integral to determine the
hydrostatic force on one end of the trough. [Hint the height of an equilateral triangle with
side length 8 is 4

√
3].
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16 Improper Integrals

16.1 Calculating Improper Integrals

When we consider definite integrals

∫ b

a
f(x)dx, we assume that a and b are finite AND f(x) is

bounded. Consider the region bounded by x = 1, y =
1

x2
and y = 0.

We can write the area (formally) as

This is only symbolic since we don’t have a definition of the integral with infinite limits of in-
tegration.

Solution:

∫ ∞

a
f(x)dx:=

Now we can solve the question above:

Note: If we have

∫ ∞

−∞
f(x)dx

Example 16.1. Determine

∫ ∞

2

1

x
dx
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Example 16.2. Find the area of the region bounded by y =
1
3
√
x
, y = 0, x = 0, x = 1.

Example 16.3. Determine

∫ 2

0

2

(x− 1)3
dx
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Example 16.4. Is

∫ 3

2

2

(x− 1)3
dx an improper integral?

16.2 Comparison Tests for Improper Integrals

Sometimes even if we cannot find the exact value for an improper integral, we can determine
whether the integral diverges or converges by comparing it to a known integral. This idea will
come in handy later when we learn about sequences and series!

Direct Comparison Theorem:
Suppose f and g are functions with 0 ≤ g(x) ≤ f(x) for x ≥ a, then
1) If

∫∞
a f(x)dx is convergent, then

∫∞
a g(x)dx

2) If
∫∞
a g(x)dx is divergent, then

∫∞
a f(x)dx

Note: If
∫∞
a f(x)dx is divergent or

∫∞
a g(x)dx is convergent, then we know

How to choose comparison functions:

f(x) =
x3 + x+ 1

x4 − x2 − 1
compare with g(x) =

Example 16.5. Is

∫ ∞

2

x3 + x+ 1

x4 − x2 − 1
dx convergent or divergent?
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Example 16.6. Show that

∫ ∞

1

(sin2 x)

x2
dx is convergent.

Example 16.7. Show that

∫ ∞

1

x

x3 − x− 1
dx is convergent. What is the problem with using a

direct comparison?
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The Limit Comparison Theorem: Suppose f and g are positive functions on [a,∞) and we

know whether or not
∫∞
a g(x)dx converges or diverges. Let lim

x→∞

f(x)

g(x)
= L, then

1) If L is finite (0 < L < ∞) then
∫∞
a g(x)dx and

∫∞
a f(x)dx either

BOTH or BOTH .

2) If L=0 AND
∫∞
a g(x)dx then

∫∞
a f(x)dx

3) If L = ∞ AND
∫∞
a g(x)dx then

∫∞
a f(x)dx

Now use the LCT to finish Example 16.7.
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16.3 ICE – Improper Integrals

1. Use the Comparison Theorem to determine whether the following integrals converge or di-
verge. That is find a comparison function, calculate its improper integral over the same
integral, and then apply either the Direct Comparison Theorem or the Limit Comparison
Theorem.

a)

∫ π

0

sin2 x√
x

dx

b)

∫ ∞

4

1√
x− 1

dx
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c)

∫ ∞

4

x3 + x2 + 1

x4 + 2
dx

d)

∫ ∞

1

2 + e−x

x+ 1
dx

2. Evaluate the improper integral

∫ 5

2

1

x− 2
dx or show that it diverges.
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17 Review

17.1 ICE -Gabriel’s Horn

Consider the object (called Gabriel’s Horn) created by rotating the curve f(x) = 1
x for x ≥ 1 about

the x-axis.

1. Sketch the graph and think about why this object (made after rotation) is called Gabriel’s
Horn.
y

x

2. Find the volume of Gabriel’s Horn using the disk method.
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3. Set up an integral to represent the surface area of Gabriel’s Horn.

4. Compare this improper integral to another function to show that this integral diverges. Note:
You can evaluate the integral. Let w = 1

x . Then use inverse substitution and then you get
an integral with sec2 θ csc θ so you have to simplify using sec2 θ = 1 + tan2 θ. Then split the
integral and integrate (remembering to substitute back twice.)
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18 Sequences

18.1 Introduction to Sequences

A sequence is a list (usually of numbers) that has a particular order assigned to each term (member)
of the list {2, 4, 6, 8, 10, ...}. Often we represent sequences as < an >, an, an

∞
n=k or {a1, a2, a3, ...}.

We call n the and it just tells us where the term is ordered in the list. Usually, but not
always, n starts at 0 or 1.

We can represent our sequences in several different ways. Given {2, 4, 6, 8, 10, ...}, we can write this
as more of a formula: an =

We can also write this sequences in an implicit formula (or recursive relation): a1 = 2,an =

Often writing a sequence in an explicit formula is the most useful way: an =

Example 18.1. Find an explicit formula for the following sequence, {2
3 ,

4
4 ,

6
5 ,

8
6 ,

10
7 , ...}

Example 18.2. Find an explicit formula for the following sequence, {1
2 ,

−1
4 , 16 ,

−1
8 , 1

10 , ...}

Some sequences cannot be written in an explicit way or are very difficult to do so.

Example 18.3. Find an implicit formula for the following sequence, {1, 1, 2, 3, 5, 8, 13, ...}.
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Image from: Amend, B. ”FoxTrot.com.” Cartoon from Oct. 11, 2005. http://www.foxtrot.com

Note: There actually is a closed form for the Fibonacci Sequence: Fn =
(1 +

√
5)n − (1−

√
5)n

2n
√
5

Example 18.4. Find an explicit or implicit formula for an = {−1, 1,−1, 1,−1, ...}.

Example 18.5. Find an explicit or implicit formula for an = {2, 3, 5, 7, 11, 13, 17, ...}.

18.2 Limits of Sequences

We define limits of sequences in the same spirit as limits of functions.

Definition of a limit:
The limit of a sequence < an > is L if as n increases, an gets closer to .
That is, lim

n→∞
an = L. Note L needs to be finite.

And we say that the limit of an as n approaches ∞ is L.
If a sequence has a limit we say it is a sequence. Otherwise we say the sequence is

or that the limit does not exist, or the sequence diverges to ±∞.
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Example 18.6. Which of our sequence examples so far have limits?

Definition of a Sequence with an Infinite limit:
Give a sequence < an >, lim

n→∞
an = ∞ means for any M > 0, we can find an integer N such that if

n > N , then .

Example 18.7. Give an example of a sequence that diverges to ∞.

Definition for the Nonexistence of a Limit: We say lim
n→∞

an ̸= L if for some positive ϵ, there

is NO integer N > 0 satisfying |an − L| < ϵ whenever n > N .

Example 18.8. Given an example of a sequence that has no limit.

18.3 Properties and Theorems for Sequences

Let (an), (bn) be sequences, and let c be a constant. Then if an → L and bn → K where L and K
are finite (so an and bn are convergent, then
a) lim

n→∞
(an ± bn) =

b) lim
n→∞

(can) =

c) lim
n→∞

(an · bn) =

d) lim
n→∞

(
an
bn

) =

e) lim
n→∞

aPn = if and .
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Sequences as Functions If lim
n→∞

f(n) = L and f(n) = an where n is an integer, then lim
n→∞

an =

Example 18.9. Determine the limit of an = { n2

ln(n2)
}∞n=2 if it exists.

Continuous Functions of Sequences If lim
n→∞

an = L and f is a continuous function at L, then

lim
n→∞

f(an) =

Example 18.10. Determine the limit of an = {e
1
2n }∞n=−5 if it exists.

Example 18.11. Determine the limit of an = {cos(nπ)}∞n=−5 if it exists.

Example 18.12. Intuitively what does the sequence an = {(−1)n+1

2n
} seem to approach? Can we

really treat it like a function of n?
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Squeeze Theorem for Sequences: If bn ≤ an ≤ cn for n ≥ n0 and lim
n→∞

bn = lim
n→∞

cn = L, then

Example 18.13. Determine the limit of an = {cosn
n

}∞n=1 if it exists.

The most romantic theorem in mathematics yields to a corollary since ≤ an ≤

Absolute Convergence for Sequences: If lim
n→∞

|an| = 0, then lim
n→∞

an =

Example 18.14. What is the limit of an =
(−1)n

n
?

Note: Sometimes determining the limit of sequences is difficult, but we can tell whether or not a
limit does exist.

Definition: A sequence is monotonic if it is either increasing or decreasing.

< an > is increasing if ≥ for all n ≥ 1

< an > is decreasing if ≥ for all n ≥ 1

< an > is strictly increasing (decreasing) if we change the inequalities to > or <.

Definition: < an > is bounded above if there exists a number M > 0, such that
for all n ≥ 1

< an > is bounded below if there exists a number m > 0, such that for all n ≥ 1

A sequence is bounded if it is bounded above AND bounded below.

Note: We can have eventually bounded above/below sequences and eventually monotone se-
quences.
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Example 18.15. Determine whether the sequence an = {1 + 1
n}

∞
n=1 is bounded. Is it monotonic?

Example 18.16. Give an example of a sequence that has the following properties:

a) Bounded but not monotonic;

b) Monotone but not bounded below;

c) Monotone but not bounded above;

d) Monotone but not bounded ;

e) Monotone and bounded;

Monotonic Sequence Theorem: Every bounded, monotonic sequence is .
proof omitted. See text.

Example 18.17. Determine whether the sequence {an}∞n=1 has a limit where

a1 = 1 and an+1 = 1 +
1

an
.
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18.4 ICE – Sequences

1. Construct 3 different sequences that all converge to 4 -one increasing, one decreasing, and one
neither increasing nor decreasing.

2. Determine whether the following statements are True or false. Include reasons or counterexam-
ples:

a) Every bounded sequence is convergent.

b) Every sequence that is bounded above is convergent.

c) Every monotonic sequence is convergent.

d) If an = {1, 12 ,
1
3 ,

1
4 ,

1
5 , . . .} and bn = {1, 0, 12 , 0,

1
3 , 0, . . .}, then lim

n→∞
an = lim

n→∞
bn.

e) An alternating sequence can be convergent.

f) The only way a sequence can diverge is if the terms tend to infinity as n tends to infinity.
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3. Determine whether the following sequences converge or diverge. If they converge find the limit.

a) an = {
√
n

1 +
√
n
}∞n=1

b)bn = {−1
4 , 29 ,

−3
16 ,

4
25 , . . .}

c) cn = {2, 7, 9, 2, 7, 9, ...}∞n=1 d) dn = { n

1 +
√
n
}∞n=1

4. Determine for which x, the sequence {xn}∞n=1 is convergent.
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19 Series

19.1 Sequence of Partial Sums

If we add up an infinite sequence {an}∞n=1 we get an infinite sum of the form:
We call this a series and we denote the series as

Each series has a sequence of sums {Sn}.
The nth term of this sequence is the sum of the first terms of {an}.
So S1 =
S2 =
S3 =
S4 =
Sn =

Key Idea: If our sequence of PARTIAL SUMS {Sn} has a limit L. Then the SERIES
∞∑
n=1

an

converges to L. That is,
∞∑
n=1

an =

If our sequence of PARTIAL SUMS {Sn} diverges, then the series
∞∑
n=1

an .

Example 19.1. For the following series, find the first 4 terms of the sequence of partial sums and
use it to find an expression for the nth partial sum Sn. Determine if the series converge or diverge?

a)
∞∑
n=1

2n

b)
∞∑
n=1

1

n(n+ 1)
.
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c)
∞∑
n=1

(−1)n

19.2 Geometric Series

Consider the series of the form
∞∑
n=0

arn

What are some of the partial sums?

a is the term of the series and r is called the ratio.

Sum of A Geometric Series: If a and r are real numbers and |r| < 1 then
∞∑
n=0

arn = a
1−r . If

|r| ≥ 1, the series diverges.

Pf. Omitted (see text).

Sometimes a geometric series show up in different forms:

∞∑
n=1

arn

∞∑
n=1

arn+1

∞∑
n=0

arn−3

∞∑
n=0

a rn

qm

For each of these, you want to make sure the series is actually a geometric series, which sometimes
requires doing some algebra to simplify it enough to identify the ratio (that is get it in the form
of: ),

you actually don’t need to do all the algebra to get it in the standard form:
∞∑
n=0

arn because...

Once you have identified the ratio, and determined it is a convergent geometric series, Dr. Harsy
recommends the following way to determine the sum:

Better Way to Remember Sum of a Geo Series:
∑

geo series=
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Example 19.2. Evaluate the following geometric series.

a)
∞∑
n=2

1

5n

c)

∞∑
n=0

e−n

e)
∞∑
n=1

(
1

2n
− 1

2n+2
)

b)
∞∑
n=2

(
7

5
)n

d)

∞∑
n=1

2n

5n+1
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19.3 Telescoping Series

We can calculate a geometric series using a formula, but not many infinite series can be solved
using a formula. But we can do this when we have another class of series called series.

Example 19.3. Evaluate
∞∑
n=1

( 1
2n − 1

2n+2 ) (not using geometric series.)

Example 19.4. Evaluate
∞∑
n=1

(
1

(n+ 1)(n+ 2)
)
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19.4 Properties of Series

The Harmonic Series: The Harmonic Series
∞∑
n=1

1

n
is divergent.

Pf. See Text. You can show the for each term of the partial sums S2n > 1 + n
2 so then Sn → ∞.

So the series diverges.

Theorem If
∞∑
n=1

an is convergent then lim
n→∞

an =

CAREFUL: The converse of this statement is not true.

Just because lim
n→∞

an = 0, does NOT mean
∞∑
n=1

an is convergent!!!

Remember the Harmonic Series:
∞∑
n=1

1

n
diverges even though lim

n→∞

1

n
= !

We can use the theorem just to show that a sequence does not converge.
Hence the next theorem:

Test for Divergence If lim
n→∞

an ̸= 0 or does not exist, then
∞∑
n=1

an .

Example 19.5. Show that
∞∑
n=1

−n2 − n+ 5

5n2 + 1
is divergent.

Example 19.6. Can we use the Test for Divergence for

∞∑
n=1

1√
n
?

Properties of Series

Let
∞∑
n=1

an = L,
∞∑
n=1

bn = M (so we have CONVERGENT series), and let c be a constant. Then

a)
∞∑
n=1

(an ± bn) = b)
∞∑
n=1

can =
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19.5 ICE – Series

Two sides!

1. Determine if the following series converge or diverge. Evaluate those that converge.

a)

∞∑
n=1

2

(−5)n
.

b)
∞∑
n=1

2n−1

(−5)n
. [Hint: factor out a −1

5
and write this as a geometric series.]

c)
∞∑
n=1

2

n2 + 4n+ 3
. [Hint: Using partial fraction, we see that 2

n2+4n+3
= 1

n+1
− 1

n+3
.]
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d)

∞∑
n=1

(
5

4n
+

4

n
)

2. Find the values for x for which

∞∑
n=1

(x+ 3)n

2n
converges. Then find the sum of the series for

those values of x.

3. The nth partial sum of a series of an is sn = 3− n

2n
. Find an and

∞∑
n=1

an.
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20 Tests for Convergence for Series

Up until now, we have had the following ways to determine whether or not a series,
∑

an,
converges:

1. Find a formula for the sequence of partial sums Sn. If Sn converges to a finite limit then∑
an converges. If Sn diverges to ∞, −∞, or the limit doesn’t exist,

∑
an diverges.

Note: When we recognize a telescoping series, we find Sn

2. Write
∑

an in the form of a geometric series,
∑

arn (if you can, remember this
doesn’t often work ). If |r| < 1, our geometric series converges. If |r| ≥ 1, the series
diverges.

3. Use the Test for Divergence. But remember this only tells us if a series diverges
and not if it converges!

The next week we will be talking about more tests for convergence. Remember this is impor-
tant because eventually we will want to use series to model functions so making sure these
models converge is important.

20.1 The Test for Divergence

The Test for Divergence: If lim
n→∞

an ̸= 0 or does not exist, then
∞∑
n=1

an diverges.

Example 20.1. Determine whether the series
∞∑
1

2n+ 1

n− 3
converges or diverges.

Example 20.2. Determine whether the series
∞∑
1

1√
n

converges or diverges.

121



20.2 Integral Test

Recall in our notes on Improper Integrals, we determined that

∫ ∞

1

1

x
dx

and

∫ ∞

1

1

x2
dx

In fact we can confirm that

∫ ∞

1

1

xk
dx diverges for and converges for .

Note: This is not true for

∫ 1

0

1

xk
dx.

We can use improper integrals to help us determine whether or not our series converge:

Integral Test for Series: Suppose f is a 1) continuous, 2) positive, and 3) decreasing (or
eventually decreasing) function on [b,∞). Let an = f(n). Then

1) If

∫ ∞

b

f(x)dx is convergent then
∞∑
n=b

f(n) =
∞∑
n=b

an is

2) If

∫ ∞

b

f(x)dx is divergent then
∞∑
n=b

f(n) =
∞∑
n=b

an is

Note: You must always justify the use of this test by checking that our function satisfies
the conditions of the theorem.

Sometimes you can modify this, if your function is eventually decreasing after n=k and use∫ ∞

k

f(x)dx for the test.

We will omit the proof and instead explore the reasoning for this using a few examples.

Let’s pick a k such that

∫ ∞

1

1

xk
dx converges.
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Now let’s pick a k such that

∫ ∞

1

1

xk
dx diverges.

Example 20.3. Use the integral test to determine whether
∞∑
n=1

n

n2 + 1
converges or diverges.

Remember you always MUST justify that you can use the integral test.

Example 20.4. Use the integral test to determine whether
∞∑
n=2

1

n ln(n)2
converges or di-

verges.
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20.3 The P-Test

Using our results from improper integrals, we know

∫ ∞

1

1

xp
dx diverges for and

converges for .
This gives us a very useful test when we apply the integral test. We use it so often, we often
think of it as its own thing:

P-test for Series:
∞∑
n=1

1

np
is divergent if and convergent if .

Definition: A series in the form of
∑ 1

nP
is called a P-Series.

Example 20.5. a) Give an example of a P-Series that converges.

b) Now give an example of a P-Series that diverges.

Example 20.6. Determine if the sum of the sequence {1, 1

4
√
2
,

1

9
√
3
,

1

16
√
4
,

1

25
√
5
, . . .} converges

or diverges.
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20.3.1 Estimating Sums of Series using Improper Integrals

Important: If we use our integral test for an = f(n) and

∫ ∞

1
f(x)dx = B < ∞, this DOES NOT

mean that

∞∑
n=1

an = B. [This makes sense if we go back to our examples from the first page.]

For example:

∫ ∞

1

1

x2
dx = 1. But

∞∑
n=1

1

n2
=

π2

6

So far we have used improper integrals to determine whether or not a series converges. We can also

use improper integrals to approximate the sum of the series.

Remember we look at the sequence of partial sums, Sn to determine the sum of a series
∞∑
n=1

an . If lim
n→∞

Sn = S, then
∞∑
n=1

an = S. This means that the error made for the nth partial

sum, denoted Rn, should be getting relatively small as n increases.

So the error in the approximating our sum using Sn is Rn = S − Sn =

So Rn =

Remainder Estimate for the Integral Test: Suppose f(n) = an, where f is a continuous,

positive, decreasing function for x ≥ n and
∞∑
n=1

an is convergent. If Rn = S − Sn,

then ≤ Rn ≤

Since Rn = S − Sn ⇒ + ≤ S ≤ +

Example 20.7. How many terms of the series
∞∑
n=1

1

n2
must be summed to obtain an approx-

imation that is within 10−2 of the exact value of the series?
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20.3.2 ICE – Integral and P-Test

Two sides!

1. Explain why the integral test can’t be used to determine whether

∞∑
n=1

cos(πn)√
n

converges or

diverges.

2. For what values of p does the sum
∞∑
n=2

1

n(ln(n))p
converge.
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3. Euler found that the exact sum of
∞∑
n=1

1

n2
=

π2

6
.

Use this to find the sum of
∞∑
n=1

1

(n+ 1)2
AND

∞∑
n=3

1

(n+ 1)2
.
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20.4 Direct Comparison Test for Series

Recall, we could determine whether an improper integral converged or diverged by compar-
ing it with another improper integral.
So if f and g are continuous functions with 0 ≤ g(x) ≤ f(x) for x ≥ a, then

1) If

∫ ∞

a

f(x)dx is convergent, then

∫ ∞

a

g(x)dx

2) If

∫ ∞

a

g(x)dx is divergent, then

∫ ∞

a

f(x)dx

We can do the same thing with series!

Direct Comparison Test for Series: Suppose
∑

an and
∑

bn are series with POSITIVE
terms. Then
1) If an ≤ bn for all n, and

∑
bn , then

∑
an

2) If an ≥ bn for all n, and
∑

bn , then
∑

an
Note: Just like with integral comparison. If an ≤ bn and

∑
bn diverges OR if an ≥ bn and∑

bn converges, then we know !!!

Helpful Series to compare with:

Example 20.8. Determine whether
∞∑
n=3

5√
n− 2

converges or diverges.

Example 20.9. Determine whether
∞∑
n=2

ln(n)

n4
converges or diverges.

129



20.5 Limit Comparison Test for Series

We use the comparison test if there is an obvious series we can compare our series to. But sometimes

life is HARD!

What about if we had
∞∑
n=3

5√
n+ 2

for example 1 instead of
∞∑
n=3

5√
n− 2

Rather than trying to find a series to compare to we can use another test.

Limit Comparison Test: Suppose
∑

an and
∑

bn are series with POSITIVE terms

AND lim
n→∞

an
bn

= L. Then

1) If L is finite (0 < L < ∞) then
∑

an and
∑

bn either BOTH or
2) If L=0 AND

∑
bn then

∑
an

3) If L = ∞ and
∑

bn then
∑

an

Example 20.10. Use the limit comparison test to determine if
∞∑
n=3

5√
n+ 2

converges or diverges.
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Example 20.11. Determine if

∞∑
n=1

5n5 − 2n2 + 3

3n7 − n+ 7
converges or diverges.

Example 20.12. What happens if we try to use the limit comparison test to determine if

∞∑
n=3

1

n2 + 5

converges or diverges by comparing it to
∞∑
n=3

1

n
?
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20.5.1 Estimating Sums of Series Using Comparison Series

Recall the error made for the nth partial sum,Rn of
∑

an is Rn = S − Sn =
Suppose we compare

∑
an with

∑
bn. Let Tn represent the error of the nth partial sum of∑

bn.
Then if an ≤ bn for all n, then

If bn is a p-series, then we can use the Remainder Estimate for the Integral Test and

Rn ≤ Tn ≤
∫ ∞

n

f(x)dx where f(n) = an.

If bn is a geometric series we also have that Rn ≤ Tn ≤
∫ ∞

n

f(x)dx where f(n) = an.

Example 20.13. Estimate the error in approximating
∞∑
n=3

n
3n(n+1)

if we use the sum of the

first 5 terms, S5, to approximate the series.
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20.5.2 ICE – Comparison Tests

1. Determine if the following series converge or diverge. Two sides!

a)
∞∑
n=1

2n2 + n5 − 1

3n9 + 2
.

b)
∞∑
n=1

1 + cos(n)√
2
n .

c)

∞∑
n=5

1

n− 2
√
n
.
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d)

∞∑
n=1

1

n2 + 2
√
n
.

e)

∞∑
n=1

sin(n) + n+ 9

(n+ 2)3
.
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20.6 The Alternating Series Test

So far we can test series using the Integral Test, P-Test, the Direct Comparison Test, and
The Limit Comparison Test. But all of these require us to have series with only
terms. What if we have some negative terms along with our nonnegative terms?

We have a test for series that alternating between positive and negative terms. An alternat-

ing series can be written in the form:
∞∑
n=k

(−1)n+1an

Example:
∞∑
n=1

(−1)n+1 is alternating

Alternating Series Test:
The alternating series

∑
(−1)n+1an converges if...

1) The terms of an are nonincreasing. That is an+1 ≤ an. [Note: eventually nonincreasing is ok.]

2) lim
n→∞

an = 0

and diverges if either of the two above conditions fails.

Warning: If we do NOT have an alternating series and have a series with all positive terms,
then lim

n→∞
an = 0 imply convergence. This is a special case for an

alternating series.

Example 20.14. Determine whether
∞∑
n=1

(−1)n+1

n
converges or diverges.

The Alternating Harmonic Series:
∞∑
n=1

(−1)n+1

n
converges to ln(2)

Example 20.15. Determine whether
∞∑
n=2

(−1)n−1

√
n− 1

converges or diverges.
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Example 20.16. Determine if
∞∑
n=1

(−1)nn4

3n4 − 5
converges or diverges.

Example 20.17. Determine if
∞∑
n=1

sin(
πn

2
)

n
converges or diverges.

20.6.1 Estimating Remainders in Alternating Series

The error made for the nth partial sum,Rn (the remainder) of a convergent alternating series∑
(−1)n+1an is bounded by the (n+ 1)th term of the sequence.

That is |Rn| ≤

Example 20.18. How many terms of
∞∑
n=1

(−1)n+1

n8
do we need to take to get the error

bounded by 1
108

?
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20.7 Absolute Convergence Test and Conditional Convergence

Any sequence an ≤ and so we can always compare
∑

an ≤ with . By
the comparison test, if

∑
|an| converges then so does

Definition: A series
∑

an is convergent if
∑

|an|

Absolute Convergence Test (Special case of Comparision Test):
If a series is absolutely convergent, it

Can we have a series that converges, but is not absolutely convergent?

Example:

Definition: A series that is convergent but not absolutely convergent is called
convergent.

Example 20.19. Is
∞∑
n=1

(−1)n

4
√
n

absolutely convergent, conditionally convergent, or divergent?

Example 20.20. Determine whether
∞∑
n=1

(−1)n+1

√
n5

is absolutely convergent, conditionally conver-

gent, or divergent?
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20.7.1 ICE – Alternating Series Test

1. Determine which of the following are true or false. Explain or give a counter example.

1) A series that converges must converge absolutely.

2) A series that converges absolutely must converge.

3) A series that converges conditionally must converge.

4) If
∑

an diverges then
∑

|an| diverges.
5) If

∑
an converges conditionally then

∑
|an| diverges.

6) If
∑

a2n converges then
∑

an converges.

2. Is

∞∑
n=2

(−1)n

ln(n)
convergent? absolutely convergent? [Hint: use alt. series test and comparision]

3. Is
∞∑
n=1

(−1)n
n√

n2 + 1
convergent? absolutely convergent?
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4. Is
∞∑
n=1

4n

3n − 1
convergent? absolutely convergent?

5. For which values of p is
∞∑
n=2

(−1)n−1

np
convergent? absolutely convergent?
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20.8 The Ratio Test

Recall, n! =
So 5! =

Consider the series
∞∑
n=1

1

n!
. Can we determine whether it converges or diverges?

Ratio Test: Given a series
∑

an. Let lim
n→∞

|an+1

an
| = L.

1) If 0 ≤ L < 1, then
∑

an is .
2) If L > 1, then

∑
an is .

3) If L = 1, then the Ratio Test is inconclusive. We don’t know if
∑

an diverges or converges.

Example 20.21. Determine if
∞∑
n=1

1

n!
converges or diverges.

Example 20.22. Determine whether
∞∑
n=1

n!

100!
converges or diverges.
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Example 20.23. Use the Ratio Test to determine whether
∞∑
n=1

1

n
converges or diverges.

20.9 The Root Test

Consider the series
∞∑
n=1

(
5n2 − 3

8n2 + 7
)n. Can we determine whether it converges or diverges?

Root Test: Given a series
∑

an. Let lim
n→∞

n
√
|an| = K.

1) If 0 ≤ K < 1, then
∑

an is .
2) If K > 1, then

∑
an is .

3) If K = 1, then the Root Test is inconclusive.

Example 20.24. Determine if
∞∑
n=1

(
5n2 − 3

8n2 + 7
)n converges or diverges.
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Example 20.25. Determine if
∞∑
n=1

(−1)n+1n23n

(n+ 2)2
converges or diverges.

Example 20.26. Determine if
∞∑
n=1

cos(4n)

4n
converges or diverges.
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20.9.1 ICE – Ratio and Root Tests

1. Determine if the following series are convergent or divergent.

a)
∞∑
n=1

n3

4n

b)
∞∑
n=1

n!

en

c)

∞∑
n=1

2n

3n
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d)

∞∑
n=1

(10)n

arctan(n)n

e) Using the Root test what values of a, will

∞∑
n=1

an converge for? diverge? Does this agree

with our geometric series test?

f)
∞∑
n=1

nn

41+4n
[Hint: Factor out a 1

4 .]
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21 Series Review

Objective 1: Strategy for Series
So many tests for series! How do we choose?!?!
It helps to recognize the general form of the series and use the test for that form.
My best suggestion for gaining intuition about series strategy is exactly what I suggested
when learning integration techniques...
I have also created a flowchart that can help you (see next page).
Game plan for Series:

1. Check for divergence using the Test for Divergence to determine if the sequence we are
summing does not have a limit of

Form of Series:

Condition for convergence: Condition for divergence:

Comment: Cannot be used to prove convergence!

2. Alternating Series Test: I have an alternating series or can rewrite my series to be
alternating. Form of Series:

Condition for convergence: Condition for divergence:

Comment: The remainder/error Rn ≤ an+1

3. Geometric Series: I see a Geometric Series!
Form(s) of Series:

Condition for convergence: Condition for divergence:

Comment: Limit of the series is
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4. P-Series: I see a P-Series!
Form of Series:

Condition for convergence: Condition for divergence:

Comment: Use for comparison tests!

5. Direct Comparison Test: I see a series that looks similar to a geometric or p-series, but
is a little more complicated.
Form of Series:

Condition for convergence: Condition for divergence:

Comment: You have to come up with the series,
∑

bn, as a comparison. Remember to justify
that an ≤ bn or an ≥ bn. Also if

∑
an has some negative values, you can compare with

∑
|an|.

6. Limit Comparison Test: It looks like I want to use a Comparison Test, but justifying
the comparison seems tough.

Form of Series:

Condition for convergence: Condition for divergence:

Comment: You have to come up with the series,
∑

bn to compare to and find lim
n→∞

an
bn

7. Ratio Test: I see a factorial (n!) or products and too complicated to compare to a p-series
or geometric series.
Form of Series:

Condition for convergence: Condition for divergence:

Comment: If lim
n→∞

|an+1|
|an|

= 1, we know !
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8. Root Test: I see an nth power.
Form of Series:

Condition for convergence: Condition for divergence:

Comment: If lim
n→∞

n
√

|an| = 1, we know !

9. Integral Test: I see a function in which f(n) = an and I can easily calculate

∫ ∞

k
f(x)dx

Form of Series:

Condition for convergence: Condition for divergence:

Comment: You must justify the use of the test! And remember the value of the integral is
NOT the value of the series.

10. Telescoping Series: I see a difference of two fractions (like 1
n − 1

n+2) or I see that the
sequence I am summing looks like I could use partial fractions. Then I can find an expression
for the sequence of partial fractions and take limn→∞ Sn which will be the sum of my series.
Form of Series:

Condition for convergence: Condition for divergence:

Comment: Sometimes you can expand the fraction and use a comparison test instead!

11. Finding Sequence of Partial Sums: I am given the sequence of partial sums Sn or I
can easily find it. Then

∑
an = limn→∞ Sn

Form of Series:

Condition for convergence: Condition for divergence:

149



Example 21.1. For each Series, suggest one approach that you think is appropriate to determine whether the series converges or

diverges.

a)
∞∑
n=1

2n

en

c)
∞∑
n=1

[(
1

3
)n − (

2

3
)n−1]

e)
∞∑
n=1

3n2 + 1√
n3 + 4

b)
∞∑
n=2

(
3n2 + 1

n2 − 1
)n

d)
∞∑
n=1

sin(n)

f)
∞∑
n=1

ne−n
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g)
∞∑
n=1

lnn2

n5

i)
∞∑
n=1

lnn2

n2

k)
∞∑
n=1

1

1 + 0.4n

h)
∞∑
n=1

(−1)n
10n

n!

j)
∞∑
n=1

n

n2 + 1

l)
∞∑
n=1

e
1
n

n2
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21.1 Flowchart Summarizing Most Series Convergence Tests

Start with
series

∑
an

Look at the
sequence of
terms {an}

What is
lim
n→∞

an?

Series
∑

an diverges by
the Test for Divergence

Is
∑

an a geo-
metric series?

Let r be the
common ratio.

Is an = 1
np ? ∑

1
np is a

p-series.

∑
an converges by

geometric series test∑
an diverges by

geometric series test∑
an converges

by the p-test∑
an diverges

by the p-test

Is every
an ≥ 0?

Does∫∞
N

f(x) dx
converge

or diverge?

Consider a function f(x) where
an = f(n), i.e., replace each n with
an x. Can you integrate

∫∞
N

f(x) dx?

∑
an converges

by integral test∑
an diverges

by integral test

Is there a sequence
{bn} where an ≤ bn
for all n > N?

Is there a sequence
{bn} where an ≥ bn
for all n > N?

Evaluate L = lim
n→∞

an
bn

Consider the se-
quence

{∣∣∣an+1

an

∣∣∣}

Consider the se-
quence { n

√
|an|}

Does the series∑
bn converge

or diverge?

Does the series∑
bn converge

or diverge?

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
L = lim

n→∞
n
√
|an|

∑
an converges by

Direct Comparison Test∑
an diverges by

Direct Comparison Test∑
an converges by

Limit Comparison Test∑
an diverges by Limit
Comparison Test∑

an converges
by the ratio test∑

an diverges
by the ratio test∑

an converges
by the root test∑

an diverges
by the root testIs

∑
an an al-

ternating series?

Let bn = |an|. Is bn ≥
bn+1 for all n ≥ N?

Huh?

Does the
series

∑
|an|

converge?

∑
an converges

by the absolute
convergence test

Does bn → 0?
∑

an converges
by the alternat-
ing series test

sequence converges

sequence diverges

not zero

zero

no
yes

|r| < 1

|r| ≥ 1
yes p > 1

p ≤ 1

no

yes

yes conv.

div.

no, I don’t know how

no

no

sequence diverges

Limit DNE or Can’t be determined

yes

yes

seq. conv.

seq. conv.

div.

conv.

L = 1

conv.

div.

conv.

div.

0 ≤ L < ∞

0 < L ≤ ∞

L < 1

L > 1

L > 1

L < 1

no

no

yes
yes

yes

no

no

yes

seq. div.
L = 1

no
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21.2 Infinite Series Convergence Testing Practice

Here are some good practice series for you to work on during your own study time. For the fol-
lowing series, your task is to make the strongest statement about convergence that is possible.
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Flowchart modified by Dr. Harsy from Dr. Edward Kim’s original LATEXdocument.
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22 Power Series

We got the Power -Power Series!
So far we have primarily discussed series of numbers. Could we have series with variables?

What if we replaced the ratio (r) in our geometric series
∑

rn with a variable x?
∞∑
0

xn, when will this series converge?

What if we replaced the ratio with (x− a)?
∞∑
0

(x− a)n When will it converge now?

We call the series above a series. It is a series in the form:

∞∑
n=0

cn(x− a)n =

Note: cn is a sequence of depending on n and should not be functions
of x.

Sometimes, we call this a power series in (x − a) or a power series centered at/about
.

The simplest power series is when we take a = . Then we get this power series:

The “Powerful Idea”: When you have
∞∑
n=0

cn(x− a)n, you have a battle between adding

up infinite terms and (x − a)n becoming smaller and smaller. If (x − a)n becomes small
enough, our infinite sum may converge!

Power Series Centered at a:
∞∑
n=0

cn(x− a)n has 3 possibilities:

1) The series converges for 1 value of x. That is, when x=
2) The series converges for values of x.
3) The series converges for values of x. That is, there exists a number R such
that the series converges for |x− a| < and diverges for |x− a| >

Definition: We call R, the radius of .

Note: For case 1) R =
and for case 2) R =
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Definition: The of convergence (or domain) of a power series is the set (usually
in interval notation) of all values of x for which the series converges.

If |x − a| = R, then we don’t know what it does. We will have to the series at
the endpoints of our interval.

So the interval of convergence could have possibilities

So how do we find this interval of convergence?

Procedure: Find a limit of your series using the Ratio or Root Test. Call this limit, L. L
often depends on x, except when L = 0 or L = ∞.
If L = 0, then R = and the interval of convergence is
If L = ∞, then R = and the interval of convergence is

If 0 < L < ∞, then solve L < :
Example: Suppose L = 1

5
|2x− 1|

To find the Radius of Convergence: To find the Interval of Convergence:
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Example 22.1. Find the interval of convergence for
∞∑
n=1

√
n(x− 2)n

Example 22.2. Find the interval of convergence for
∞∑
n=1

n2n(x+ 1)n
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Example 22.3. Find the interval of convergence for
∞∑
n=1

(3x− 2)n

n3n
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Example 22.4. Find the interval of convergence for
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

22.1 Differentiating and Integrating Power Series

Given a power series

∞∑
n=0

cn(x − a)n with a radius of convergence R, we can consider the sum of

the series as a function of and we can integrate and differentiate this function on the
interval (a−R, a+R). We can then represent f ′(x) and

∫
f(x)dx as a power series too.

Theorem Differentiating/Integrating Power Series:

Suppose
∑

cn(x− a)n has a radius of convergence R. Then f(x) =
∞∑
n=0

cn(x− a)n =

is continuous and differentiable on (a−R, a+R) and
1) f ′(x) =

2)
∫
f(x)dx =

Both of these two new power series have the radius of convergence as f(x).

Note: But the interval of convergence may be
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22.2 ICE – Power Series

1. Find the radius of convergence and the interval of convergence for the following series.
3 sides!

a)
∞∑
n=1

xn+1

(n+ 1)!
.

b)
∞∑
n=1

xn

n3n
.
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c)
∞∑
n=1

n3(x− 5)n.

d)
∞∑
n=1

xn

ln(n)n
.
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e)
∞∑
n=1

(n+ 1)!(x− 3)n.

f)
∞∑
n=1

n

bn
(x− a)n for b > 0.
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22.3 Using Power Series to Represent Functions

If |r| < 1, the geometric series
∞∑
n=0

a(r)n has a sum of

The power series
∞∑
n=0

(x)n has a sum of as long as |x| < .

So this means we can represent our function using a series: f(x) = 1
1−x

=

In fact we can do this for a lot of functions. It just requires some creativity!

Example 22.5. Find a power series to represent f(x) =
1

1 + 3x
.

Example 22.6. Find a power series to represent f(x) =
x5

1 + 3x
.

Example 22.7. Find a power series to represent f(x) =
1

x3 + x2
.
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Example 22.8. Use your answer from Example 1 to find a power series to represent g(x) =
ln(3x+ 1)

3
.

Example 22.9. Find a power series to represent f(x) =
1

(1 + x)2
What is the radius of conver-

gence?
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22.4 ICE –Introduction to Taylor Series

1. Given the function f(x) =

∞∑
n=0

cn(x− a)n. Find the values of the coefficents c0, c1, c2, ...

a) Find c0 by plugging in x = a into f(x).

b) Find c1 by plugging in x = a into f ′(x)

c) Find c2 by plugging in x = a into f ′′(x).

d) Find c3 by plugging in x = a into f ′′′(x).

e)Find c4 by plugging in x = a into f (4)(x).

f) Can you see the pattern to find cn ?
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2. a) Evaluate
∫

x
1+x3dx as a power series. What is the radius of convergence?

b) What is the maxiumum error if we use the first 5 terms (so up until n=4) of a power series to
approximate

∫ 0.2
0

x
1+x3dx

3. Find a power series to represent f(x) = x arctan(x2) [Hint: We would like to find a function g(x) such that∫
g(x)dx = arctan(x2). So we may want something of the form

∫ dw
1+w2 where w = x2.] What is the radius of convergence?
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23 Taylor Series

From our ICE sheet we found that if f(x) =

∞∑
n=0

cn(x − a)n and |x − a| < R, then the coefficients

are given by cn = .

So we can write f(x) =

Definition: Taylor Series for f at a:

Definition: Maclaurin Series for f :
(AKA: The Taylor Series for f at 0)

Definition: The mth-degree Taylor Polynomial for f at a:
Tm =

Example 23.1. Find the 5th degree Taylor polynomial, T5 for f(x) = cosx centered at 0. Then
find the Maclaurin Series for f(x) = cosx. What is the interval of convergence?
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Example 23.2. Find the Taylor series for f(x) = cosx centered at π
6 after first finding T3.

23.1 The Binomial Series

We can find the Maclaurin series for f(x) = (1 + x)k where k is any real number. In doing so we
must determine f (n)(0) for n=0,1,2,3,.... What results is a series called the series.
The Binomial Series
For any real number k, and |x| < 1, then

(1 + x)k = 1 + kx+ k(k−1)
2! x2 + k(k−1)(k−2)

3! x3 + ...=

Each coefficient can be written as

(
k

n

)
=

k!

n!(k − n)!
which are called the binomial coefficients.

Note: We must check the convergence at x = ±1, and the convergence depends on k.

Example 23.3. Find the first 4 terms of the Maclaurin series for the function f(x) =
√
1 + x and

use it to approximate
√
1.17.

172



23.2 Using Known Maclaurin Series

Of course you can always derive a Maclaurin Series. But often it is quickier if you can memorize
a few common ones. Below is a list of common series that may be useful to memorize.
Maclaurin Series and Radii of Convergence

Function Radius Series Expanded

1

1− x
1

∞∑
n=0

xn = 1 + x+ x2 + x3 + ...

ex ∞
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ ...

sinx ∞
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ ...

cosx ∞
∞∑
n=0

(−1)n
x2n

(2n)!
= 1 +−x2

2!
+

x4

4!
− x6

6!
+ ...

arctanx 1
∞∑
n=1

(−1)n
x2n+1

2n+ 1
= x− x3

3
+

x5

5
− x7

7
+ ...

ln(1 + x) 1
∞∑
n=1

(−1)n+1x
n

n
= x− x2

2
+

x3

3
− x4

4
+

x5

5
− ...

(1 + x)k 1
∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)x2

2!
+

k(k − 1)(k − 2)x3

3!
+ ...

Example 23.4. a) Find the sum of the series 1 + ln 2 + (ln 2)2

2! + (ln 2)3

3! + ...

b) Find the sum of the series 1− ln 2 + (ln 2)2

2! − (ln 2)3

3! + ...
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Example 23.5. Find the Maclurin series for f(x) = sin(2x) and g(x) = x sin(2x).

Example 23.6. Find the first four non-zero terms of the Maclaurin series for f(x) = (arctanx)ex.
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23.3 Using Taylor Polynomials

Why is it useful to use Taylor Polynomials to approximate functions?

Recall, in Section 10, sometimes we have functions that aren’t derivatives of a nice function.
These are called non-elementary functions. Some other examples include: examples include the

elliptical integral:
∫ √

1− x4dx,
∫
ln(ln(x))dx,

∫ ex

x
dx,

∫
ee

x
dx,

∫ 1

lnx
dx,

∫ sinx

x
dx,

∫
sin(x2)dx,

and
∫ √

x cos(x)dx. Some of these functions come up in applications, so not being able to calculate
them cane be a problem. Luckily Taylor Polynomials can help!

Example 23.7. Recall the Gaussian function f(x) = e−x2
is not the derivative of any elementary

function. That is,
∫
e−x2

dx does not exist! Represent this function as a Taylor series.

Obviously, an infinite series is not practical to use for applications, so instead we use Taylor Poly-
nomials and the appropriate choice of coefficients, you can approximate any function (within a
certain radius of convergence) by a power series with the appropriate choice of coefficients. Let’s
visualize that Radius of convergence.
Below is the graph of f0(x) = sin(x) along with several Taylor polynomials. What do you notice?
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23.4 Remainder Theorem/Error Analysis for Taylor Series

Naturally if we cut off a Taylor Series at say n=100, we are missing terms and will not get an exact
solution. The sum of the missing terms is called the of the Taylor Series and we denote
it as Rn(x). Then we can write f(x) = +

Theorem If f(x) = + and lim
n→∞

Rn(x) = , for |x− a| < R. Then

f(x) is equal to its series on the interval |x− a| < R..

We can use the following to help show that lim
n→∞

Rn(x) =

Taylor’s Inequality if |f (n+1)(x)| ≤ M for |x− a| < d, then
|Rn(x)| ≤

for |x− a| < d

Pf. Omitted. See Text.

Example 23.8. Find the maximum error in approximating cos(0.4) using the 10th degree Maclaurin
Series (The 10th degree Taylor Polynomial at 0).
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Example 23.9. Find the constant M when approximating (0.1)6 using the 3rd degree Maclaurin
Series (The 3rd degree Taylor Polynomial at 0).

Example 23.10. 2 The resistivity ρ of a conducting wire is the reciprocal of the conductivity and
is measured in unites of ohm-meters (Ω · m). The resistivity of a given metal depends on the
temperature according to the equation

ρ(t) = ρ20e
α(t−20)

where t is the temperature in ◦C. α, the temperature coefficient, and ρ20, the resistivity at 20◦C,
are constants depending on the metal being used.
Except at very low temperatures, the resistivity varies almost linearly with temperature and so it is
common to approximate the expression for ρ(t) by the its first- or second- degree Taylor polynomial
at t = 20. Find expressions for these linear and quadratic approximations.

2From Stewart’s Calculus
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23.5 ICE –Taylor Series

1. Recall
∫ sinx

x
dx cannot be evaluated. Instead represent this integral as a Taylor Series

centered at 0.

2. Recall
∫
sin(x2)dx cannot be evaluated. Instead represent this integral as a Taylor Polynomial

of degree 10 centered at 0.

3. Go to Desmos Graphing Calculator. Let’s explore how the 2 function above look as we add
more terms to our Taylor Polynomial Appoximatings.
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4. Find the Taylor series for f(x) = e3x centered at x = 5.

5. Find the Maclaurin series for f(x) = ex by deriving it (don’t use a table). What is the Taylor
series for f(x) = ex at x = −1?
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6. Find the Taylor series for f(x) = sinx centered at a = π
2 .

7. Find the Taylor series for f(x) = x−2 centered at a = 1. You can derive this yourself or find
the binomial expansion for (x+ 1)−2 Then substitute x− 1 in.
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8. Find the Taylor series for f(x) = xex at 1. Hint: f (n)(x) = (x+ n)ex.
Then find the Maclaurin series for f(x) = xex either by using the definition or known series
from your table.

9. Find the first three terms (including 0 terms) of the Maclaurin series for f(x) = ex ln(1+ x).
Use your chart of known Maclaurin series from your notes!
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24 Differential Equations

24.1 Brief Introduction to Differential Equations

Suppose I know that f ′(x) = 2x or y′ = 2x. In other words, we know the derivative of a function
is equal to 2x. Can you determine what y is? What did you do?

The example above is called a separable differentiable equation. It is called a differential equation
because it has an unknown function and its derivative. It is separable because you can solve the
equation by separating the variables and integrating.

Some differentiable equations are not as easy to solve by hand, like y′′ + y′ = y
x + 1, and if you

take Differentiable Equations, you will learn techniques to solve or approximate solutions to these
equation.

Differentiable equations are often used in modeling. For example, we can represent the population
of foxes as a function of time, say f(t).
What does f ′(t) represent?

Often f ′(t) is proportional to the population at time t, f(t)3.
That is, f ′(t) =

We could also write this as y′ = ky or dy
dx = ky. In words, this means we are looking for a function

whose derivative is a constant multiple of itself. What function(s) satisfy this property?

It turns out that dy
dx = ky is separable and we can solve it.

3Recall, y is proportional to x if y = kx.
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24.1.1 Law of Natural Growth/Decay

Our work above gives us this important result.

Law of Natural Growth/Decay: If y is the value of a quantity at time t and if the rate of

change of y with respect to t is proportional to the size of y at time t, then
dy

dt
=

k is the relative growth/decay rate.
If k > 0, this change is natural
If k < 0, this change is natural

Theorem: The only solutions to the differential equation
dy

dt
= ky or f ′(t) = kf(t) are exponen-

tial functions with the form y(t) = y(0)ekt or f(t) = P0e
kt That is, if a population has a constant

relative growth (decay) rate, it must grow (decay) exponentially.

Example 24.1. A bacteria culture has a constant relative growth rate. (That is, it has a constant
growth rate that is proportional to its size.) After 2 hours, the bacteria count was 600 and after 8
hours the count was 75,000. When will there be 200,000 bacteria?

Example 24.2. Tritium-3 has a half-life of 50000 years. Find its constant relative decay rate.
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24.1.2 Newton’s Law of Cooling

Newton’s Law of Cooling states that the rate of cooling of an object is proportional to the tem-
perature difference between the object and its surroundings. That is if T is the temperature of the

object and Ts is the temperature of its surroundings, then
dT

dt
=

Newton’s Law of Cooling: T (t) − Ts = (T (0) − Ts)e
kt Where T (t) is the temperature of the

object at time t and T (0) is the initial temperature.
Alternative form: T (t) = (T (0)− Ts)e

kt + Ts

Example 24.3. A root beer is taken from the fridge and its temperature is 5◦ C. After 25 minutes,
the root beer is 10◦ C. The temperature in your house is 20◦ C. What is the temperature of the root
beer after 50 minutes?
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24.1.3 Continuous Compounded Interest

Compounded interest is the result of leaving money in an investment and earning interest on top
of old interest.
If a principal of P0 dollars is deposited at an annual rate of interest r compounded n times per

year, the account will have A = P0(1 +
r

n
)nt dollars after t years.

Continuous Compound interest is the result of interest accumulating instantaneously.
If a principal of P0 dollars is deposited at an interest rate of r compounded continuously for t years,
the account will have A = P0e

rt.

If this is written as a differential equation, we get:
dA

dt
= with initial condition A(0) = P0

Example 24.4. If $500 is borrowed at 14% interest. What is owed after 2 years if interest is
compounded continuously?
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24.2 General Differential Equations

From looking at the last few examples, we can see that there are many applications to just one type
of differential equations. In fact we have only scratched the surface of some of the applications.
Other applications include modeling first-order chemical reaction rates, heat transfer, population
dynamics, Dielectric breakdown, Computer processing power (Moore’s law), and more!

Remember a differential equation is an equation with an unknown function y and its derivative. Be-
ware, y is not a number and represents a function often in terms of time or other variables y = f(t).

Examples:

A)
dy

dx
− 2y = sin(x)

D)
d2y

dx2
+ 4y = 0

B) y′(t) = 3t

E) y′ = x2 − y

C) ey
dy

dx
= 7t

F)
dP

dt
= 0.1P (1− P

200
)

Definition 24.1. The of a differential equation is the order of the highest-order deriva-
tive that appears in the equation.

Example: Equations involving only the first derivative of a function (ie no higher order derivatives)
are called -ordered Differential Equations and have the form:

Definition 24.2. A differential equation is linear if the unknown function (ie y, f(t), ...) and its
derivative appear only to the first power and are not composed with other functions.

Example: A First-ordered Linear Differential Equation is an equation which involves only linear
terms of the function and its derivative.

The standard form of a 1st-order Linear Differential Equation:

Note: P (x) and Q(x) are functions of x that need NOT be linear!

Example 24.5. Go back to the example above and identify which differential equations are first
order linear equations.

Definition 24.3. The solution of a D.E. is the most generic possible solution to the
D.E. and contains all possible solutions.

Definition 24.4. The solution of a D.E. is a specific solution to the D.E and satisfies
a given initial value or condition of the equation.
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Definition 24.5. A First-ordered Differential Equation, y′(x) = f(x, y) is if f can be
expressed as a product of a function of x and y.

These are set up to be solved through integration!
Standard Form:

Examples:

Example 24.6. Show that y = Ae
x3

3 is a solution to the differential equation dy
dx = x2y.
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Example 24.7. a) Find the general solution to ey dy
dt = 2t.

b) Find the particular solution which satisfies the the initial condition, y(2) = 0, t >
√
3.
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24.3 Optional Topic: Solving First-Order Linear Differential Equa-
tions

Recall a First-Order Linear Differential Equation can be written in the form:

dy

dx
+ P (x)y = Q(x).

Suppose P (x) and Q(x) are constants, say P (x) = p and Q(x) = q where p and q are constants.
Then the first-order linear differential equation becomes

dy

dx
+ py = q.

We already know how to solve this type! Consider y′(t)− 7y(t) = 1.

Conclusion: The general solution to a first-order linear differential equation of the form y′(t) +
py(t) = q where p and q are constant is
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Now how do we solve
dy

dx
+ P (x)y = Q(x) when P (x) and Q(x) are not constant?

Consider the differential equation. y′ +
1

x
y = 2.

How do we find our integrating factor I(x) in general?

� Recall
dv(x)y

dx
= v

dy

dx
+vP (x)y, differentiating (using implicit differentiation and the product

rule to differentiate v(x)y), we get:
dv

dx
y + v

dy

dx
= v

dy

dx
+ vP (x)y

� So
dv

dx
y = vP (x)y

� Solving the separable differential equation, we get∫ dv

v
=

∫
P (x)dx

Thus ln |v| = ln(v) =
∫
P (x)dx (recall v is assumed to be positive)

Thus v = e
∫
P (x)dx

Example 24.8. Which of the following are first order differential equations? Write each first order
differential equation in standard form, and and identify P (x) and Q(x).

1. xy′ = x2y − 1

2. x dy
dx − x2y = −1

x

3. yy′ = y2x− 2x

4. −y′ + 4 sin(x)y + x ln(x) = 1
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2. To Solve a First Order Linear Differential Equation:

1. Write your differential equation in standard form:
dy

dx
+ P (x)y = Q(x).

2. Find your integrating factor: I(x) = e
∫
P (x)dx

3. Multiply both sides of your differential equation by I(x).

4. Recognize your equation as (I(x)y)′ = I(x)Q(x).

5. Integrate both sides to solve for y, so y =
1

I(x)

(∫
I(x)Q(x)dx+ C

)
.

6. Apply initial conditions to find particular solutions if needed.

Example 24.9. Find the solution to x
dy

dx
+ y − 2

√
x = 0 for x > 0.
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24.4 ICE -Differential Equations

1. What is the order of y′′ = 10− 9y? 2. True or False: y′′(t) = 10− 9y(t) is linear.

3. Find the general (or particular) solution to the following Differential Equations.

(a) y′ =
√
xy

(b)
dy

dx
= 2− y, y(1) = 2

(c) x3 dwdx =
√
w(2x− 1)

(d)
dy

dx
= ex−y where y(0) = ln(2)
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4. Give an example of a non-linear differential equation.

5. Give an example of a separable differential equation.

6. Give an example of a 3rd-order differential equation.

7. Find the general (or particular) solution to the following First order linear Differential Equa-
tions.

(a) xy′ + 3y = 1− 1
x (b) 2y′ − y = e

x
4
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24.5 Slope Fields

Since general solutions to differential equations are families of functions, sometimes it is helpful
to visualize these solutions. As we mentioned before, solving differential equations is often pretty
difficult, so sometimes we can “plot” our differential equations so we can visualize and approximate
solutions. This graphical way to represent solutions to differential equations are called
fields or directional fields.

Method: For
dy

dt
= f(t, y) [Remember y is a function so you can also represent this by

dy(t)

dt
=

f(t, y(t))]. A solution to this equation has the property that at each point (t, y) of the solution
curve the slope of the curve is F (t, y). We visualize this by plotting the slop of the solution at
selected points of the ty-plane. (sometimes instead of t, you could have x)

Example 24.10. Plot the Slope Field for y′(x) = 2x

−5−4−3−2−1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Example 24.11. The slope field below represents which of the following differential equations?

a) y′ = yt

b) y′ = y
t

c) y′ = −yt

d) y′ = −y
t
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Example 24.12. Match the following Differential Equations with their Slope Fields.

1) y′ = x− y 2) y′ = x(x+ y) 3) y′ = x+ y

Example 24.13. Recall in Example 24.6, we verified that y = Ae
x3

3 is a solution to the differential
equation dy

dx = x2y. Below is the Slope field for dy
dx = x2y. Use it to approximate the rate of change

of y(x) at (1, 2).

Note: Slope Fields are also the basis for many computer-based methods (Like Euler) for approxi-
mating solutions of differential equations.

There are many plotting tools online for plotting slope fields.
Here is one: https://www.desmos.com/calculator/p7vd3cdmei
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Example 24.14. Kirchoff’s Law states that a simple circuit containing a resistor of R ohms and
an inductor of L Henrys in series with a source of electromotive force that supplies a voltage V (t)
volts at time t satisfies V (t) = RI + LdI

dt .

a) Suppose the resistance is 12 ohms, the inductance is 4 Henrys, and a batery gives a constant
voltage of 60V. Write dI

dt in terms of these values.

b) Below is the slope field for this D.E. What can you say about the limiting value of the current?

(c)Identify any equilibrium solutions using the slope field below.

(d) Note if the switch is closed initially, the current starts with I(0) = 0. Use the direction field to
sketch the solution curve.

e) Find the solution to this differential equation with these values (you could also do this in general!).
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24.5.1 ICE -Slope Fields

1. Match the following Differential Equations with their Slope Fields.

1) y′ = yex 2) y′ = xey 3) y′ = ye−x

2. The arrows in the slope field below have slopes that match the derivative y′ for a range of
values of the function y and the independent variable t. Suppose that y(0) = 0. What would
you predict for y(5)?
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3. Below is the slope field for dy
dx = y(1−y). As x → ∞, the solution to the differential equation

that satisfies the initial condition y(0) = 2 will...

(a) Increase asymptotically to y = 1

(b) Decrease asymptotically to y = 1

(c) Increase without bound

(d) Decrease without bound

(e) Start and remain horizontal

4. The slope field below indicates that the differential equation has which form?

(a) y′ = f(y)

(b) y′ = f(t)

(c) y′ = f(y, t)

(d) None of the above.

5. Suppose
dx

dt
= 0.5x and x(0) = 8. Then the value of x(2) is approximately...

(a) 4 (b) 8 (c) 9 (d) 12 (e) 16
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A Practice Problems and Review for Exams

The following pages are practice problems and main concepts you should master on each exam.
Core concepts will have heavier weight than regular concepts.

These problems are meant to help you practice for the exam and are often harder than what you
will see on the exam. You should also look over all ICE sheets, Homework problems, Quizzes, and
Lecture Notes. Make sure you can do all of the problems in these sets.

Disclaimer: The following lists are topics that you should be familiar with, and these are problems
that you should be able to solve. This list may not be complete. You are responsible for everything
that we have covered thus far in this course.

I will post the solutions to these practice exams on our blackboard site. If you find any mistakes
with my solutions, please let me know right away and feel free to email at any hour.

Good Luck,
Dr. H
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A.1 Practice Problems for Exam 1

First look over all ICE sheets, Homework problems, Quizzes, and Lecture Notes. Make sure you
can do all of those problems. You can also practice with the problems below. Disclaimer: The
following is a list of topics that you should be familiar with, and a list of problems that you should
be able to solve. This list may not be complete. You are responsible for everything that we have
covered thus far in this course.

Here are the 7 Mastery Concepts:
Concept 1: Differentiation and Integration Techniques

� Know how to use the chain rule, product rule, and quotient rule.

� Know how to use the recognition of antiderivatives and substitution.

� Be able to differentiate and integrate exponential functions, logarithmic functions, inverse
trigonometric functions, hyperbolic functions.

Concept 2: Average Value, Net Change, and Mean Value Theorem

� Interpret indefinite integrals as net change, calculate the average value of a function over an
interval, and use the Mean Value Theorem for Integrals

Concept 3: Advanced Integration Techniques: Integration by Parts and Partial Fractions

� Recognize and know how to integrate using Integration by Parts

Concept 4: Advanced Integration Techniques: Higher Trigonometric Techniques

� Recognize and know how to integrate using Higher Trigonometric Techniques

Concept 5: Advanced Integration Techniques: Inverse Trigonometric Substitution

� Recognize and know how to integrate using Inverse Trigonometric Substitution

Concept 6: Advanced Integration Techniques: Partial Fractions

� Recognize and know how to integrate using Partial Fractions

Concept 7: Identifying Advanced Integration Techniques:

� You will be given integrals in which you should identify which technique is best to use when
integrating and describe your first step for solving the problem.

� Recognize when to integrate using Substitution, Recognition of a derivative of a known func-
tion, Integration by Parts, Higher Trigonometric Techniques, Inverse Trigonometric Substi-
tution, and Partial Fractions
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Derivatives: Know how to differentiate the following functions:

1. ex

2. lnx

3. ln |x|

4. ax

5. loga x (can use change of basis rule to derive)

6. arcsinx

7. arccosx

8. arctanx

9. arccot x

10. sinhx

11. coshx

12. tanhx

13. csch x

14. sech x

15. coth x

16. sinh−1 x

17. cosh−1 x

18. tanh−1 x
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Antiderivatives: Know how to integrate the following functions:

1. ex

2. 1
x (remember absolute value!)

3. tanx (can derive by using sinx
cosx and substitution )

4. ax

5.
1√

1− x2

6.
−1√
1− x2

7.
1

1 + x2

8.
1

a2 + x2
(can derive by factoring out the a2)

9.
1√

a2 − x2
(can derive by factoring out the a2)

10.
−1√

a2 − x2
(can derive by factoring out the a2)

11. sinhx

12. coshx

13. sech2x

14.
1√

1 + x2

15.
1√

x2 − 1

16.
1

1− x2
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Derivatives: Know how to differentiate the following functions:

1. ex

2. lnx

3. ln |x|

4. ax

5. loga x (can use change of basis rule to derive)

6. arcsinx

7. arccosx

8. arctanx

9. arccot x

10. sinhx

11. coshx

12. tanhx

13. csch x

14. sech x

15. coth x

16. sinh−1 x

17. cosh−1 x

18. tanh−1 x
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Antiderivatives: Know how to integrate the following functions:

1. ex

2. 1
x (remember absolute value!)

3. tanx (can derive by using sinx
cosx and substitution )

4. ax

5.
1√

1− x2

6.
−1√
1− x2

7.
1

1 + x2

8.
1

a2 + x2
(can derive by factoring out the a2)

9.
1√

a2 − x2
(can derive by factoring out the a2)

10.
−1√

a2 − x2
(can derive by factoring out the a2)

11. sinhx

12. coshx

13. sech2x

14.
1√

1 + x2

15.
1√

x2 − 1

16.
1

1− x2
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1. Differentiate the following functions.

a) y = ln[(x3 + 3x2)5], for x > 0

c) f(x) = arcsin(x2)

e) f(x) = log2 tan(5x
3)

g) g(x) = arctan(arccos
√
x)

b) h(x) = ln(
1

x
) +

1

lnx

d) k(x) = tanh
√
x

f) k(x) = cosh−1(sinhx)

h) y = x · π3x

2. Find the equation to the line tangent to y = (x− 1)ex + 3 lnx+ 2 at x = 1.

Assume all domains of integrals are ok for indefinite integrals.

3. Evaluate

∫
(2tan θ sec2 θ)dθ

4. Evaluate

∫
1

2x2 + 9
dx

5. Evaluate

∫ 1

0
(x2 + 1)ex

3+3xdx

6. Evaluate

∫
x− 1

3x2 − 6x+ 2
dx

7. Evaluate

∫
coshx+

1√
1 + x2

dx

8. Find the partial fraction for
x

x4 − 1
. You do not need to solve for the coefficients.

9. Find the partial fraction for
x2 + 2x− 1

2x3 + 3x2 − 2x
. You do not need to solve for the coefficients.

10. Evaluate

∫
arcsinxdx

11. Evaluate

∫
1

√
x2 + 5

3dx

12. Evaluate

∫
1

x2
√
4− x2

dx
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13. Evaluate

∫
10

(x− 1)(x2 + 9)
dx

14. Evaluate

∫
dx√
4 + x2

15. Evaluate

∫
tan4 x sec2 xdx

16. Evaluate

∫
1

(x− 1)(x+ 5)2
dx

17. Evaluate

∫
dx√

x2 + 2x+ 5

18. Evaluate

∫
secxdx.

19. Evaluate

∫
x tanx sec2 xdx

20. Evaluate

∫
sin4 xdx

21. Evaluate

∫
dx√
x2 − 1

22. Evaluate

∫
e2x

e2x + 5ex + 6
dx

23. The population of goats on a deserted and magical island changes at a rate given by P ′(t) =

30−20t individuals per year. What does the

∫ 5

2
P ′(t)dt represent? What about

∫ 5

2
|P ′(t)|dt?

24. Assume f is a continuous function with

∫ 6

2
f(x)dx = 12. Show that f takes the value of 3

once on the interval [2, 6].

25. A magical star is launched into the sky with a trajectory given by p(t) = t(20− t). Find the
average height of the star during its flight.
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A.2 Practice Problems for Exam 2

First look over all ICE sheets, Homework problems, Quizzes, and Lecture Notes. Make sure you can
do all of those problems. You can also practice with the problems below. Also look over material
from previous exams! Disclaimer: The following is a list of topics that you should be familiar with,
and a list of problems that you should be able to solve. This list may not be complete. You are
responsible for everything that we have covered thus far in this course.

Here are the 5 new Mastery Concepts:

Concept 8: Numerical Integration

� You will need to know how to use the Trapezoid Rule.

� You will need to know how to use Simpson’s Rule.

� You will need to know how to find the error in a trapezoid approximation and a Simpson’s
approximation, but I will give you the error formulas.

Concept 9: Volumes

� Be able to set up integrals that represent the volumes made from rotating functions around
lines.

� Know how to use the Disk/Washer Method.

� Know how to use the Shell Method.

Concept 10: Arc Length and Surface Area

� Be able to set up integrals that represent the arc length of functions.

� Be able to set up integrals that represent the surface area from 3-dimensional shapes made
from rotating functions around lines.

� Understand which radius and arc length formula to use depending on which variable you are
integrating with respect to and which axis you are rotating around.

Concept 11: Work

� Know how to set up and sometimes solve integrals that represent the work done depending
on the situation

� Be able to set up an integral that calculates the work done in pumping out water from a
tank.

Concept 12: Hydrostatic Force

� Be able to set up an integral that calculates hydrostatic force.
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1. Set up an integral representing the surface area obtained by rotating y =
√
1 + ex about the

x-axis for 0 ≤ x ≤ 1, integrate with respect to x.

2. Set up an integral representing the surface area obtained by rotating y =
√
1 + ex about the

x-axis for 0 ≤ x ≤ 1, integrate with respect to y.

3. Set up an integral representing the surface area obtained by rotating y =
√
1 + ex about the

y-axis for 0 ≤ x ≤ 1, integrate with respect to x.

4. Set up an integral representing the surface area obtained by rotating y =
√
1 + ex about the

y-axis for 0 ≤ x ≤ 1 but integrate with respect to y.

5. A 200 ft cable that weighs 10 lb/ft is used to lift a 1600 lb crate of chinchillas out of a 100
foot hole. How much work is required to save the chinchillas (lift them out of the hole)?

6. Suppose a tank has a shape of a half a sphere (spherical part on the bottom) with a radius
of 4 ft and a 1 foot spout. Suppose it is completely filled with water. Set up the integral
used to find the work required to empty the tank by pumping all the water out of the spout.
Use the fact that the weight of water is 62.5 lb/ft3.

7. Suppose a tank has a shape of triangular prism with a height of 4 ft and length of 8 ft and
a width of 6 ft with a 2 foot spout. Suppose it is filled to a height of 3 ft with water. Set up
an integral to represent the work required to empty the tank by pumping all the water out
of the spout. Use the fact that the weight of water is 62.5 lb/ft3.

8. Suppose a tank has a shape of rectangular prism with a height of 3 ft and length of 5 ft and
a width of 2 ft with a 1 foot spout. Suppose it is completely filled with water. Set up an
integral to represent the work required to empty the tank by pumping all the water out of
the spout. Use the fact that the weight of water is 62.5 lb/ft3.

9. A right triangular plate with height of 3 ft, a base of 4ft and hypotenuse of 5ft is submerged
2 ft below the surface of the water. Express the hydrostatic force against one side of the
plate.

10. A semi-circular plate with diameter 8m is partially submerged in water so that all but the
top 2 meters is submerged in the water. Express the hydrostatic force against one side of the
plate. The straight part of the semi-circle is out of the water.

11. A square plate with side length of 8m is partially submerged in water so that all but the top
3 meters is submerged in the water. Express the hydrostatic force against one side of the
plate.

12. a) Use n = 4 in Simpson’s Rule and in the Trapezoid Rule to approximate the area under
the curve given by f(x) = x3 between x = 1 and x = 3.

b) Find the maximum error in T4 and S4
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13. a) Find the equation for the volume of the solid formed by rotating the region bounded by
f(x) = (x − 1)2 and g(x) = 2x − 2 around the y-axis using both the shell method and the
disk method.

b) Now use both methods to set up the integral for the region rotated around the line x = −2.

14. a) Find the equation for the volume of the solid formed by rotating the region bounded by
f(x) =

√
x and g(x) = x2 around the x-axis using both the shell method and the disk

method.

b) Now use both methods to set up the integral for the region rotated around the line y = 2.
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A.3 Practice Problems for Exam 3

First look over all ICE sheets, Homework problems, Quizzes, and Lecture Notes. Make sure you can
do all of those problems. You can also practice with the problems below. Also look over material
from previous exams! Disclaimer: The following is a list of topics that you should be familiar with,
and a list of problems that you should be able to solve. This list may not be complete. You are
responsible for everything that we have covered thus far in this course.

Here are the 3 new Mastery Concepts:

Concept 13: Improper Integrals

� Know how to solve improper integrals using a limit.

� Know how to use comparison tests to check if improper integrals diverge or converge.

Concept 14: Theoretical Understanding of Sequence & Series Properties, Definitions, & Theo-
rems

1. These will most likely be short answer or true or false. See problems 5-10

2. Look back through your sequence and series notes.

3. Know that a monotonic and bounded sequence converges.

4. Know the definition of monotonic, bounded, convergent, and divergent sequences.

5. Know the relationship between the sequence of partial sums and series.

6. Determine whether or not a geometric series converges or diverges and find the sum if it is
convergent.

Concept 15: Series Tests

� Know how and when to use the Test for Divergence

� Know how and when to use the Integral test

� Know how and when to use the Comparison test and Limit Comparison test

� Know how and when to use the Alternating Series test

� Know how and when to use the Ratio test

� Know how and when to use the Root test

� Know how and when to use the Geometric Series test (and find the sum if the series is
convergent)
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1. Evaluate the improper integral or show that it diverges.

∫ ∞

1

lnx

x3
dx

2. Determine whether the integral converges or diverges by using the comparison test:

∫ ∞

1

cosx

1 + x2
dx

.

3. Evaluate the improper integral or show that it diverges.

∫ 4

0

1

(2− 3x)
1
3

dx

4. Find the sum of the telescoping series:

∞∑
n=1

(
3

n(n+ 3)

5. Find the sum of the geometric series

∞∑
n=1

5

4n
or state that it diverges.

6. Determine whether

∞∑
n=1

(n+ 1)2

n(n+ 4)
exists. Find the limit if you can. If the limit does not exist,

state why.

7. Determine whether

∞∑
n=1

(5(1/2)n − 3(1/2)n+1) exists. Find the limit if you can. If the limit

does not exist, state why.

8. Suppose I have a series
∞∑
n=1

an and lim
n→∞

an+1

an
= 1. What conclusion, if any, can be drawn

about the convergence of

∞∑
n=1

an? Refer to any Tests, Theorems, or Definitions you use.

9. Suppose I have a series

∞∑
n=1

an and lim
n→∞

an
1
n

=
1

2
. What conclusion, if any, can be drawn

about the convergence of
∞∑
n=1

an? Refer to any Tests, Theorems, or Definitions you use.

10. Suppose I have a series
∞∑
n=1

an,
∞∑
n=1

bn diverges, and lim
n→∞

an
bn

= 0. What conclusion, if any,

can be drawn about the convergence of
∞∑
n=1

an? Refer to any Tests, Theorems, or Definitions

you use.

11. Does the series
∞∑
n=1

sin(
nπ

4
) converge? If so, find the sum. If not state why. Refer to any

Tests, Theorems, or Definitions you use.
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12. Does the series

∞∑
n=2

(−1)n
√
n2 − 1 converge absolutely, conditionally, or diverge? Refer to

any Tests, Theorems, or Definitions you use.

13. Consider the series
∞∑
n=1

3

n

(a) Write the first three terms of the sequence of terms.

(b) Write the first three terms of the sequence of partial sums.

(c) Does the sequence of terms converge? If so what is its limit? If not, explain why it
diverges.

(d) Does the series converge? If so what is its limit? If not, explain why it diverges referring
to any theorems or tests used.

14. Does the series
∞∑
n=5

4n+1

7n−1
converge? If so, find its sum. If not, explain why it diverges.

15. Use the limit comparison test to determine whether
∞∑
n=1

n2 − 4

3n4 + 10
converges or diverges.

16. Determine whether
∞∑
n=1

(−1)n

n0.1
is conditionally convergent, absolutely convergent, or diver-

gent.

17. Determine whether
∞∑
n=1

(−1)n
lnn

n
is conditionally convergent, absolutely convergent, or di-

vergent.

18. Determine whether

∞∑
n=1

(−1)n
n2 + 1

3n
is conditionally convergent, absolutely convergent, or

divergent.

19. Determine whether
∞∑
n=1

(−5)2n

n29n
is conditionally convergent, absolutely convergent, or diver-

gent.

20. Determine whether

∞∑
n=1

(−1)n
nn

n!
is conditionally convergent, absolutely convergent, or diver-

gent.
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A.4 Practice Problems for Exam 4

First look over all ICE sheets, Homework problems, Quizzes, and Lecture Notes. Make sure you can do all of those problems. You can also practice

with the problems below. Also look over material from previous exams! Disclaimer: The following is a list of topics that you should be familiar

with, and a list of problems that you should be able to solve. This list may not be complete. You are responsible for everything that we have

covered thus far in this course.

Here are the 3 New Mastery Concepts:

Concept 16: Interval of Convergence for Power Series

� Be able to determine the radius and interval of convergence for power series

� Be able to represent a function as a power series

Concept 17: Taylor Series

� Know how to find the Taylor or Maclurin Series for a function

� I will give you the formula for the Taylor Series.

Concept 18: Differential Equations and Slope Fields

� Be able to solve separable differential equations.

� Be able to identify and create examples of differential equations with different properties
(linear, 2nd-order, separable, etc.)

� Be able to sketch a Slope Field of a Differential Equation.

� Use Slope Fields to approximate values of the function and sketch solutions.

� Be able to recognize and construct differential equations with particular properties like (3-
ordered, linear, separable, non-separable)
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1. Find the radius of convergence and the interval of convergence of the power series

∞∑
n=1

(−1)n
xn√
n
.

2. Find the radius of convergence and the interval of convergence of the power series

∞∑
n=1

xn

(lnn)n
.

3. Find the radius of convergence and the interval of convergence of the power series

∞∑
n=1

(2n)!(x− 1)n

(n!)2
.

4. Find the radius of convergence and the interval of convergence of the power series

∞∑
n=0

nn(x+ 2)n

3n
.

5. Find a power series representation for f(x) =
x

1− x2
for −1 < x < 1

6. Find a power series to represent f(x) =
2

3 + x
.

7. Find the first four terms of the Maclaurin series expansion of the function f(x) =
√
1 + x at

0 for −1 < x < 1. Use the Binomial series or derive it yourself.

8. Find the T4(x) for f(x) = sinx at a=1.

9. Find the Taylor series expansion of f(x) = sinhx at x=0. Recall sinh 0 = 0 and cosh 0 = 1.

10. The half-life of radium is 1690 years. If 100 grams of radium are present initially, how much
will remain after 200 years? Find an exact answer, not just a decimal approximation.

11. Which of the following is the slope field for
dy

dx
= x+ y?
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12. What does the differential equation
dy

dx
= 2y tell us about the slope of the solution curves at

at any point?
(a) The slope is always 2.
(b) The slope is equal to the x-coordinate.
(c) The slope is equal to the y-coordinate.
(d) The slope is equal to two times the x-coordinate.
(e) The slope is equal to two times the y-coordinate.
(f) None of the above.

13. Solve the following differential equations

(a) y′(t) =
3t2

y
(b)

dy

dx
= e

y
2 sin(x)

14. Solve the following differential equations

(a) x
dy

dx
= 2x2 + 4, y(1) = 2 (b) y′(x) = −2y − 4, y(0) = 0

15. The slope field for a differential equation is given below. Sketch the particular solution for
the initial condition y(0) = −5 and use it to approximate the value of y(2.5) and y(5).

16. Bonus Topic: Find the general and particular solutions to the following differential equa-
tions

(a) y′ + 4y = e−3x, y(0) = 4 (b) xy′ + 4y = 10x, y(1) = 0, x > 0
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B Homework

Please write your solutions on these homework pages and show enough of your work so that I can
follow your thought process. This makes it easier for me to grade. Also please staple the homework
together before you turn it in. Sometimes I have my stapler, but there is also a stapler in my office
and at the Study Tables.

Follow the instructions for each question. If I can’t read your work or answer, you will receive little
or no credit!
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B.1 Calculus II HW 1: Due Tues 9/5 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers. There are Two sides!

1. Differentiate the following functions -You do not need to simplify once you have correctly
done the differentiation:

(a) y =
2

(3x− 1)2
+
√
7x+ 2

(b) g(x) = [sec(cosx)]3

(c)h(x) = x2 tan(5x)

(d) f(x) =
x− 1

2x− 3

2. Review: Use completing the square to to solve x2 + 8x = 9

3. Review: If x = 3 sin θ, draw a right triangle that represents this relationship. [Hint: Solve
for sin θ and two of the sides of your triangle should have lengths, “x,” and “3.”]
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4. Evaluate the following integrals.

(a)

∫
(
2

x3
+
√
x+ 1)dx

(c)

∫ 4

0

x√
x2 + 5

dx

(e)

∫
3 cosx+ 9x2 + 3

sinx+ x3 + x
dx

(b)

∫
(3x+ 1)2dx

(d)

∫
sin(x) sec2(cos(x))dx

(f)

∫
x

5 + 3x2
dx
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B.2 Calculus II HW 2: Due Tues 9/12 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers. There are two sides!

1. Evaluate the following using hyperbolic functions:

a)

∫
3 coshx+ 9x2 + 3

sinhx+ x3 + x
dx

b)

∫
1√

5 + 3x2
dx

2. Evaluate

∫
2xe(x

2 + ex
2
)dx. [Hint: Simplify using [ax · ay = ax+y] first, then you can use

simple substitution.
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3. Archer is creating a balloon arch for Eva’s birthday. The equation for the balloon arch is
given by the function y = 10 sinx for 0 ≤ x ≤ π. What is the average height of the arch
above the ground? What is the maximum height?

4. The linear density in a rod 8m long is
12√
x+ 1

kg/m where x is measured in meters from one

end of the rod. Find the average density of the rod.
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B.3 Calculus II HW 3: Due Tues 9/19 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers. There are four pages which are two-sided!

1. Evaluate
∫ 2
1 x2 lnxdx.

2. The famous Math Kitties, Eva & Archer are studying for their calculus class. Archer looks
at

∫
(sin(x))3dx and sees an inside function sinx. He tells Eva, that he remembers that Dr.

Harsy says to look for the simple substitution first, so he is going to try the substitution
w = sinx. Explain why this substitution will not work to help evaluate the given integral
and suggest a better approach to this integral. Then proceed to evaluate

∫
(sin(x))3dx.
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3. Use Inverse Trigonometric Substitution to evaluate

∫
x3√
9 + x2

dx.

4. Evaluate
∫ x− 2

x4 + x2
dx.
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5. Evaluate
∫
(arcsinx)dx.

6. The famous Math Kitties, Eva and Archer are discussing how to evaluate

∫
1

4− x2
dx. Archer

wants to use partial fractions to evaluate the integral, but Eva says she recognizes a version
of an inverse hyperbolic function. Who is correct? Are they both correct? If so, evaluate
this integral using each of their methods.
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B.4 Calculus II HW 4: Due Tues 10/3 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers. There are two sides!

1. Eva and Archer are wanting to evaluate

∫
ex sin(2x)dx. Eva says that we should suspect

that this is an example of a cycling integration by parts problem. Explain why she knows
this and then evaluate the integral using this technique.

2. Consider the definite integral

∫ 1

0
x tan(x)dx. (This problem has multiple parts.)

(a) Explain why this integral cannot be evaluated exactly by using either substitution or
by integrating by parts.
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(b) Using the appropriate subintervals compute T4.

(c) Calculate the maximum error for using T4 to approximate the integral.

(d) Using the appropriate subintervals compute S8.
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(e) Which of the approximations of the integral (T4 or S8) is an over-estimate? Which is
an under-estimate? How do you know?

(f) Bonus: Calculate the maximum error for using S8 to approximate the integral.

3. The rate at which water flows through Table Rock Dam on the White River in Branson, MO,
is measured in cubic feet per second (CFS). As engineers open the floodgates, flow rates are
recorded according to the following chart.

Water Flow Data
t

seconds
0 10 20 30 40 50 60

r(t)
flow in CFS

2000 2100 2400 3000 3900 5100 6500

(a) What definite integral measures the total volume of water to flow through the dam in
the 60 second time period provided by the table above?
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(b) Approximate the integral stated in the previous question by calculating for the largest
possible value of Sn, based on the given data.

(c) Compute 1
60Sn and

2000 + 2100 + 2400 + 3000 + 3900 + 5100 + 6500

7
. What quantity

do both of these values estimate? Which is a more accurate approximation?
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B.5 Calculus II HW 5: Due Tues 10/10 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers. There are two sides!

1. For the following questions, find the equation for the volume of the solid formed by the region
bounded by y = x2 and y = 2x rotated around the following lines. DO NOT EVALUATE
THE INTEGRALS!!! Just set them up.

(a) Draw a clear and clean picture of the area enclosed by the two curves. (Make sure you
know which function is the top function.)

(b) Use the Disk/washer method to set up the integral of the region rotated around the
x-axis.

(c) Use the Disk/washer method to set up the integral of the region rotated around the
y-axis.
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(d) Use the Disk/washer method to set up the integral of the region rotated around the
x = −2.

(e) Use the Disk/washer method to set up the integral of the region rotated around the
y = −1.

(f) Use the Disk/washer method to set up the integral of the region rotated around the
y = 6.

(g) Use the Disk/washer method to set up the integral of the region rotated around the
x = 6.

(h) Use the Shell method to set up the integral of the region rotated around the x-axis.
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(i) Use the Shell method to set up the integral of the region rotated around the y-axis.

(j) Use the Shell method to set up the integral of the region rotated around the x = −2.

(k) Use the Shell method to set up the integral of the region rotated around the y = −1.

(l) Use the Shell method to set up the integral of the region rotated around the x = 6.

(m) Use the Shell method to set up the integral of the region rotated around the y = 6.
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2. The Magnificent Math Kitties finding the volume made by rotating the region bounded by
f(x) = −x2 + 3x & y = 0 about the y-axis. Archer doesn’t like to use the shell method, and
wants to use the disk/washer method for the problem. Eva argues that this will cause him
extra work & that the shell method is easier. Explain why Eva is correct & set up a definite
integral representing the volume of this rotated region using the shell method.
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B.6 Calculus II HW 6: Due Tues 10/17 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers.

1. Suppose a tank has a shape of triangular prism with a height of 5 ft and length of 8 ft and a
width of 4 ft with a 1 foot spout. Suppose it is filled with water up to a height of 3 ft. Set
up an integral to represent the work required to empty the tank by pumping all the water
out of the spout. Use the fact that the weight of water is 62.5 lb/ft3.

241 ©Harsy HW Page 1 of 4



2. Set up an integral that expresses the hydrostatic force against one side of the vertical plate
that is submerged in water with the shape indicated by the picture below. The density of
water is 62.5 lb/ft2.

3. Set up an integral that expresses the hydrostatic force against one side of the vertical plate
that is submerged in water with the shape indicated by the picture below. The density of
water is 62.5 lb/ft2.
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4. Set up an integral that expresses the hydrostatic force against one side of the vertical plate
that is submerged in water with the shape indicated by the picture below. The density of
water is 62.5 lb/ft2.

5. Set up an integral that expresses the hydrostatic force against one side of the vertical plate
that is submerged in water with the shape indicated by the picture below. The density of
water is 62.5 lb/ft2.
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6. Set up an integral that represents the area of the surface obtained by rotating the curve y =
e2x for 0 ≤ x ≤ 1 about the following lines.DO NOT EVALUATE THE INTEGRAL.

(a) about the x-axis with respect to x

(b) about the x-axis with respect to y

(c) about the y-axis with respect to x

(d) about the y-axis with respect to y

7. Evaluate

∫ 1

0

1

x
3
2

dx or determine if it diverges.
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B.7 Calculus II HW 7: Due Fri 10/27 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers.

1. Use a Comparison Theorem or The Limit Comparison Theorem to determine whether

∫ ∞

2

1

1 + 8x+ x3
dx

converges/diverges.

2. Use a Comparison Theorem or The Limit Comparison Theorem to determine whether∫ ∞

2

x2 + x+ 2

1 + 8x+ x3
dx converges/diverges.
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3. Determine whether the following sequences are convergent. You must show some form of
work or explanation.

a) an =< ln(1+n
n ) >∞

n=1

b) a1 = 2 and an+1 =
1

3− an
[Hint: Show an is bounded and decreasing and use a theorem.]

c) cn = {e−nn5}∞n=0

d) dn = {1 + (−1)n

n }∞n=0
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4. 4 Sequences have many applications in mathematics and the sciences. In a recent paper5,
the authors write

The incretin hormone glucagon-like peptide-1 (GLP-1) is capable of ameliorating
glucose-dependent insulin secretion in subjects with diabetes. However, its very
short half-life (1.5-5 min) in plasma represents a major limitation for its use in
the clinical setting.

The half-life of GLP-1 is the time it takes for half of the hormone to decay in its medium.
For this exercise, assume the half-life of GLP-1 is 5 minutes. So if A is the amount of GLP-1

in plasma at some time, then only
A

2
of the hormone will be present after t + 5 minutes.

Suppose we start with A0 = 200 grams of the hormone are initially present in plasma.

(a) Let A1 be the amount of GLP-1 present after 5 minutes. Find the value of A1.

(b) Let A2 be the amount of GLP-1 present after 10 minutes. Find the value of A2.

(c) Let A3 be the amount of GLP-1 present after 15 minutes. Find the value of A3.

(d) Let An be the amount of GLP-1 present after 5n minutes. Find the value of a formula
for An.

(e) Does the sequence {An} converge or diverge? If the sequence converges, find its limit
and explain why this value makes sense in the context of this problem.

(f) Determine the number of minutes it takes until the amount of GLP-1 in plasma is 1
gram.

4Problem taken from active calculus
5Hui H, Farilla L, Merkel P, Perfetti R. The short half-life of glucagon-like peptide-1 in plasma does not

reflect its long-lasting beneficial effects, Eur J Endocrinol 2002 Jun;146(6):863-9.
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B.8 Calculus II HW 8: Due Tues 10/31 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers.

1. For the following series, find the sum of the series or determine that it diverges by writing
the series as a geometric series.

a)
∞∑
n=0

(−2)n+1

3n

b)
∞∑
n=0

πn

3n

c)

∞∑
n=0

2n

3n−1
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d)

∞∑
n=0

2n

3n+1

2. Find the sum of

∞∑
n=1

2

n2 + 2n
or show that it diverges. Use the fact that

2

n2 + 2n
=

1

n
− 1

n+ 2
.
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3. The incredible Math Kitties, Eva and Archer are trying to determine the convergence of
∞∑
n=3

n2 − n

3n2 + n− 1
. Archer says that since the sequence { n2 − n

3n2 + n− 1
} converges, so must the

series. Is Archer correct? If not, help Eva correct his logic.

4. The Fabulous Math Kitties, Eva and Archer have found that the nth partial sum for the

series
∞∑
n=1

an is sn =
n− 1

n+ 2
. Archer says that since the limit of the sequence of partial sums is

1 and not 0, the series diverges. Eva says that the limit of the sequence of partial sums gives
us the value that our series approaches, and thus the sum of our series is 1. Which Kitty is
correct? Explain why and include what mistakes the kitty with the misconception has.
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B.9 Calculus II HW 9: Due Tues 11/7 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers.

1. We can write x = 0.999999999... as the sum of the geometric series x =

∞∑
n=1

9

10n
.

Show that 0.9999999... = 1. Explain your answer.

2. The Esteemed Math Kitties Eva and Archer are determining the convergence of
∞∑
n=0

n

n+ 1
.

Archer wants to use the Ratio test. Eva says that the Ratio Test will not work in this case.
Who is correct? What test should be conducted?
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3. The Studious Math Kitties Eva and Archer are trying to determine the convergence for∑
(−1)nan. Archer has found that this series converges by the Alternating Series Test, and

says that this must mean
∑

an also converges. Is he correct?

4. For the following series use appropriate tests to determine the convergence or diverges of the
following series.

(a)
∞∑
n=2

n3 − 1

n7 + 1

(b)
∞∑
n=0

(−1)n+1

√
n+ 2
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(c)

∞∑
n=1

100n

n!

(d)

∞∑
n=1

(
1

nn
)

(e)

∞∑
n=3

1

n ln(n)
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B.10 Calculus II HW 10: Due Tues 11/21 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers.

1. Find the radius of convergence and the interval of convergence for
∞∑
n=1

(x)n

nn
.

2. Find the radius of convergence and the interval of convergence for
∞∑
n=1

n!(x+ 3)n+1.
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3. Find the radius of convergence and the interval of convergence for

∞∑
n=1

2n(x− 2)n.
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B.11 Calculus II HW 11: Due Tues 11/28 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers. There are two sides!

1. a) Find T5(x) (the fifth degree Taylor polynomial) for f(x) = cosx centered at π
2 .

b) Now find a summand formula for the whole Taylor series.
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2. Find the third degree Taylor polynomial T3(x) for f(x) = ex ln(1 + x) centered at 0. Use
your list of Maclurin series from your notes.

3. Find a power series to represent f(x) =arctanhx. Use the fact that arctanhx =
∫ 1

1− x2
dx.

Hint: Don’t use a Taylor series. Bonus question if we skipped Functions as Series
Notes.
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B.12 Calculus II HW 12: Due Tues 12/5 Name:

Follow the instructions for each question and show enough of your work so that I can follow your
thought process. If I can’t read your work or answer, you will receive little or no credit! Please
submit this sheet with your answers. There are two sides!

1. Find the general solution to the following differential equations

a) dy
dx = 3x2y − 4y b) y′ =

7e2x

y2
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2. Consider the slope field below. Which of the following forms is this differential equation:
dy

dt
= f(y),

dy

dx
= f(t), or

dy

dt
= f(y, t). Explain your reasoning.

3. The arrows in the slope field below have slopes that match the derivative y′ for a range of
values of the function y = f(t). Suppose that y(0) = −4. Draw the particular solution to
the differential equation with this initial value condition. What would you predict for y(5)?
Explain your reasoning.

4. The incredible math kitties Eva and Archer are looking at the slope field above. Archer says
that from the graph he can see that if he follows the solution with the given value y(0) = 1,
he can see that at t = 1, the value of y′ ≈ 0. Is this the correct way to interpret y′ from this
graph? If not, what is the correct way to interpret y′ and y when t = 1 with the initial value
y(0) = 1?
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5. Bonus First Order Linear problems: Find the general solution to the following differ-
ential equations

a) e−xy′ + e−xy = 4 b) dy
dx + 3x2y = x2, y(0) = −1
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B.13 Calculus II HW 13: Due Fri 12/8 Name:

This is your last HW for the year!

1. Please complete the Lewis University evaluation for my Calc II class. In the past it has
been posted on Bb, but last semester students received an email from noreply@tk20.com or
caleighaoconnell@lewisu.edu with a link to do the evaluations. Once you have completed the
evaluation, you will get an email. To get credit and in order for me to calculate whether
90% of the class has completed the evaluation, please forward this email to me. Please give
thoughtful, constructive feedback which will help me improve the course. For example saying
“You suck” or “You are great” doesn’t provide much feedback for me. Saying “You suck
because...” or “You are great because...” Also, remember for everything you like about the
course, there is at least one other person who dislikes it, so please let me know what you
would like to be kept the same about the course.

Check one:
□ I completed the evaluation.
□ I have not completed the evaluation.

2. Create a Meme about this course. It can be something about the topic we covered this
semester, but it should relate in some way to this course. On the last day of school, we will
share all of the memes and vote for the best one. [Note: You can use a meme that already
exists if it relates to this course, but it is more fun to create your own.] I will create an
assignment in blackboard in which you can upload your Meme or you can print it and attach
to this paper. You can find pictures of Eva and Archer if you would like to use them in your
meme here: http://bit.ly/EvaArcherPics.

3. Create a “good” Archer answer relating to something from what we learned in class this
semester. So this should be an incorrect answer (but not a trivial incorrect answer) that
demonstrates a subtle misconception about a concept or topic in this course. Then write
what Eva should say in order to help explain what Archer’s misconception is and help correct
his mistake. You may want to use the backside of this paper.
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