

System Vulnerabilities in the
Enterprise and The Scavenger

Project

By:

Matthew A. Kwiatkowski
Argonne National Laboratory

2

(This page intentionally left blank)

3

Table of Contents:

Introduction: 4
Why Do Vulnerability Assessments and Tracking: 4
The Beginning of Scavenger: 7
Prerequisites for Scavenger: 8
Scavenger Setup at Argonne National Lab: 9
Scavenger Inner Workings: 13
Scavenger Reporting Features: 16
Future of Scavenger: 21
Appendix A: Back-end Source Code of Scavenger: 23

Appendix B: Front-end Source Code of Scavenger: 65

Works Cited: 91

4

Introduction:

 About two years ago, in late 2004, Argonne National Laboratory (ANL) was

running a commercial version of a computer vulnerability assessment and remediation

program. Deficiencies were found in that program for the Laboratory’s needs, and

features were asked of the company who wrote the program. It took months to get

features added to the program because of the closed source. In addition, the types of

technology used to code the program made integration with that commercial vulnerability

program very difficult. What was decided was to write our own custom vulnerability

assessment and remediation program. Thus, Scavenger was born.

Why Do Vulnerability Assessments and Tracking?:

To start, what is vulnerability scanning? Vulnerability scanning is very similar to

port scanning and packet sniffing. Vulnerability scanning is using tools to identify

weaknesses in an operating system or network to mount an attack against [10]. Like

packet sniffing or network sniffing, vulnerability scanning scans all the systems that

respond on a network and runs tests against those systems to find a weakness. If a

weakness is found it is recorded so that a report can be generated. Along with the

weakness and system it was found on there can be other data as well. For instance,

discovery time, risk level, system information, serivice information, other weaknesses,

and remediation information. The next logical question would be: Why do vulnerability

scanning? According to the FBI Computer Crime Survey, 52% of companies surveyed

had unauthorized use of computers in their organization. Also, 65% of attacks on

networks and systems were virus related totaling to a financial loss of over 15 million

dollars [1]. Usually, viruses take advantage of vulnerabilities in systems and networks.

The FBI continues to say that only 43% of organizations use an Intrusion prevention

system [1]. This means 57% of companies do not have an intrusion prevention

application. The most likely reason is cost. The cost to purchase, implement and

maintain a comprehensive intrusion prevention system can be prohibitive for some

smaller organizations. The availability of a vulnerability detection and remediation

tracking system may not be cost effective. The goal of this project was to provide an

organization an effective, free option, a new tool called Scavenger.

Vulnerability assessment is a critical part of the comprehensive look at cyber

security. The main idea behind vulnerability scanning is for administrators to find

vulnerabilities in their systems before any of the “bad” guys do [6]. The FBI survey

states that 82% of the respondents use security audits by internal staff as an effective

technique to evaluate the security stance of an organization [1]. Cisco Systems takes the

approach that an organization must do penetration testing and vulnerability assessment in

some form or another. The scanning of computer systems is one major part of

vulnerability assessment. They even say that the cyber team should think like a criminal

and avoid the “Titanic syndrome”: do not think that the ship was built so well it won’t

5

sink. [3]. The same holds true for a network. Do not think that a perimeter firewall will

be the final answer to an organization’s cyber defense. The Internet is always changing,

and so must one’s cyber security defense mechanisms. Some examples of what Cisco

thinks are dynamic considerations for vulnerability testing is:

1. Proliferation of viruses and Trojans

2. Wireless LANS

3. Complexity of networks

4. Frequency of software updates

5. Ease of hacking tools

6. The nature of open source

7. Reliance on the Internet

8. Unmonitored mobile users and visitors

9. Industry Standards

10. Cyber Warfare

The speed of today’s new Trojans, viruses and worms is staggering. The Sasser

virus was one of the most damaging viruses in 2004. It caused flights to be delayed and

trains to come to a halt, yet, the virus was written by a German teenager [3].

 Wireless LAN’s are becoming more and more popular as mobile computing

network speeds are increasing. Wireless networks go beyond typical physical boundaries

and can extend beyond the physical walls of an organization.

 The complexity of networks to support multiple protocols, services, and platforms

intensifies the need to verify issues that may arise with such a diverse network that is

designed to interoperate. Even web services have become more complex. Previously, a

web server held information in a static page. Today, there are web portals, applications,

and dynamic web content that is ever-changing. Web authoring and creating web

applications is a normal business practice, which needs to be audited [3].

 Software updates are so frequently released for all the platforms that exist on a

network that it is becoming a challenge for system and network administrators to keep up

with patching and compliance. Auditors need real-time information to verify that

administrators are keeping up with patches. According to the FBI Survey, 70% of actions

needed after a detected computer intrusion was simply to apply a patch [1].

 Hacking tools have become easier to use [3]. The evolution of these tools are

turning everyday people into crackers and fostering a whole new breed of cyber-

criminals..

 The nature of open source operating systems, applications, and services have

given rise to freely distributed software. While this can be a good thing for

organizations, the availability of source code to certain open source applications can help

crackers identify potential backdoors and buffer overflows [3].

 Since most companies and organizations rely heavily on the Internet for their

public-facing identity, there must be a certain level of systems that is open to the Internet,

including crackers. Also many software updates come from the Internet in an automated

process, so companies cannot just be disconnected from the Internet.

 With wireless visitor networks on the rise, monitoring these users and

distinguishing them from the organization’s employees is becoming harder to do with

mobile computing becoming so popular.

6

 Industry standards may dictate how an organization has to secure and report its

network and system infrastructure. Some examples of reporting standards that are

industry based are Health Insurance Portability and Accountability Act (HIPAA) and

Sarbanes–Oxley Act of 2002 (SOX). For Argonne National Laboratory, we follow the

Federal National Institute of Standards and Technology (NIST) guidelines and report to

the Computer Incident Advisory Capability (CIAC) for the Department of Energy.

 Finally, Cyber warfare is a reality today. Companies and federal institutions are

attacked on a daily basis by outside competitors or countries seeking to gain unauthorized

access into the networks and systems. This hacktivism usually focuses on the forward-

facing websites of popular corporate dot-coms and government agencies for religious and

political reasons [3]. Having a vulnerability scanner, penetration testing, and compliance

tool solution solves most if not all of these problems.

 To summarize, vulnerability scanning and penetration testing is an essential part

of securing an organization’s network and information systems. Now, how does one go

about scanning a network? Microsoft suggests that a network scope its cyber attack

targets ahead of time [4]. As we will see, one of Scavenger’s requirements will be to

make the application configurable to match an organization’s infrastructure in an effort to

ensure that the identified targets match the characteristics of the organization. Usually,

the essential network and system issues to investigate include the following [4]:

1. Network and host discovery

2. Port scanning

3. Password attacks

4. Application attacks

5. Database attacks

6. Web attacks

7. Email attacks

8. Domain controller attacks

9. VPN threats

A single tool, Nessus, can help address all of these issues. Nessus is classified as a

vulnerability scanner which is defined as: “A vulnerability scanner is a computer program

designed to search an application, computer or network for weaknesses. The scanner

systematically engages the target in an attempt to discover vulnerabilities. The program

can be used either to find holes and plug them before they are exploited or to find holes

and exploit them [7]. “ We will see how the selection of Nessus functions as the core of

the Scavenger product. We will also see that the default full list of plug-ins selected can

address all these attack vectors. How can Nessus check for password complexity and

things of that nature? The answer is that Nessus has compliance checks built into the

application that can check for password complexity, registry settings on windows and

Active Directory, UNIX audit tests for running processes, a user security policy, and the

content of selected files [5]. Most popular operating systems are covered by the audit and

compliance checks that are part of Nessus, such as all MS Windows NT 4.0 and higher,

Mac OS X, Linux, HP/UX, and Solaris, just to name a few [5]. The criteria that Nessus

uses for these compliance checks are based on industry standards set by the National

Institute of Standards and Technology (NIST) and the National Security Agency (NSA)

and by laws like Sarbanes–Oxley Act of 2002 (SOX) [5]. Nessus was also designed to

7

not require any sort of local authentication on a machine, specifically Windows, to

perform an accurate vulnerability assessment of a system. Instead of verifying

permissions, Nessus will attempt to exploit a known vulnerability in a safe manner to

make a determination, if a host is indeed vulnerable [6]. This feature was important to

the ANL Cyber Security Office, since, in many cases the Cyber Office does not have full

administrative access to all ANL machines.

The Beginning of Scavenger:

 The name Scavenger is purposely suggestive: the program “scavenges” the

vulnerabilities from the network like a vulture and reports them to administrators and

expects a response. There are two types of vulnerability scanners, passive and active.

The nature of finding vulnerabilities and reporting them to the respective administrators,

would classify Scavenger as a passive vulnerability scanner [8]. If one of Scavenger’s

goals were to fix vulnerabilities in real time, it would then fall into the active scanner

class. Scavenger’s broad project goals were the following:

1. Be Configurable

a. Code the Scavenger application to be easily changed so that as the

organization changes the application can change with it. Also, if new

requirements are created during the application life cycle, they can be

easily integrated into the product.

2. Provide real-time vulnerability scanning

a. All ANL networks must be scanned in near real time. All nets must be

included to make this a comprehensive solution.

b. All VPN connections/upon connection must be scanned in real time.

Education, notification, and controls must complement the scan. This will

focus on home users who connect to the VPN to increase awareness and

security with home users connecting to ANL networks.

c. All visitor connections/upon network registration should be scanned

before they are allowed onto the network. This will enable us to create a

process that will allow and deny visitors access to ANL visitor networks

based on the heath of their machines. The more secure the machines are

connecting to the visitor network, the fewer problems we have with rogue

systems or compromised visitor systems on our visitor network.

3. Keep vulnerability false positives low. Provide a mechanism to allow Cyber

Representatives to mark Scavenger results as false positives.

4. Keep track of scanning results in an Open Source Data Base MYSQL. We have

in-house support mechanisms and expertise with MYSQL. Furthermore, with

these software choices, acquisition costs will be nothing

5. Use an Open Source Scanner. Nessus was the Scanner of choice because it

allows us to write custom checks, modify existing checks, integrate easily with

other open source technologies, and has a track record [11] for having more

accurate scanning results according to other National Laboratories.

8

6. Have a web interface for the front end

a. Populate interface with scanner results. This allows us to take the raw

scanner results, which are hard to read and put them in a format that is

friendly to system and network administrators.

b. Keep track of vulnerabilities across the Laboratory. ANL is distributed in

its network architecture, so we wanted to keep track of individual

divisional/departmental progress with keeping up with vulnerabilities.

This will also enhance our reporting capabilities if we separate into

multiple divisions.

c. Provide Administrative functions for Scavenger Administrators. The

Cyber Security Program Office (CSPO) must see the divisional progress

and have the reports generated for us. We have the responsibility to report

the vulnerability assessments of the entire laboratory to the Department of

Energy (DOE), so we need global access into the Scavenger system.

d. Provide auditing tools/graphs. This would complement our reporting

features that the CSPO must provide to DOE.

e. Keep track of vulnerability remediation/answers. In order to comply with

DOE orders, we must keep track of who, when, and why vulnerabilities

were purged from the Scavenger interface.

7. Use an Open Source Web Server. Apache is the choice for the CSPO office. We

have supported and maintained Apache we servers with in house expertise on

those servers, so leveraging the experience we have onsite was the best choice.

Prerequisites for Scavenger:

 What Scavenger does not do is find the systems on the network to scan, in real

time. That has to come from somewhere else. Depending on the size of the network,

finding new hosts can be done in different ways. The network infrastructure and the type

of work that Argonne does required Scavenger to have very targeted scans. In order to be

real time, we could not scan the entire network space that Argonne owns as it is too large

and not all of it is used. For a smaller rollout, scanning a subnet or two can be done very

quickly and efficiently. For example, if you only have 255 or 500 hosts on a network,

you could easily scan every host IP every 15-20 minutes looking for new hosts and

vulnerabilities. Argonne owns three Class B networks, which means that it has 65534 * 3

or 196,602 hosts to scan. Instead of scanning the entire space, which could literally take

days, we choose to leverage an existing Cisco technology of ARP tables. ARP, or

Address Resolution Protocol, runs on all the Cisco switches. There is infrastructure that

Cisco provides where you can copy these tables to a database with IP (Internet Protocol)

Address, MAC (Media Access Control) address, time, and date information to derive

active hosts, new hosts, and so forth.

 The most critical dependency is the Nessus scanner. Prior to version 3, Nessus

was open source. The most current version, including the first release of version 3, is

closed source. However, the majority of the plug-ins that are used for the scans have

remained open source. Nessus is a scanner that satisfies requirements set out by

Microsoft and Cisco when choosing a vulnerability and penetration-testing platform [3,

4]. The scanner can scan for open ports, easily guessed passwords, database

9

misconfigurations, web site and application misconfiguration or coding issues, patch

levels on multiple platforms, known vulnerabilities, Trojan horses, and certain type of

virus infections. Nessus can be considered the core of the Scavenger system. Nessus has

proven time and again that it, as an open source project, detects more vulnerabilities than

any comparable commercial vulnerability scanner [11].

 Scavenger also depends on LAMP technology. LAMP stands for Linux, Apache,

MySql, and PHP or Perl. LAMP is the “technological glue” used to integrate the Nessus

scanner with other open source technologies to make Scavenger a viable solution to the

vulnerability and penetration testing and tracking problem. To keep Scavenger open

source, we decided to use open source technology. Not only does this make the

integration easier, it uses technology that can be readily modified for our use. Since we

are contemplating releasing Scavenger to the open source community, basing it on open

source technologies was just a natural fit.

Scavenger Setup at Argonne National Lab:

 Scavenger is setup to do a multitude of scans. There are two nessus

configurations that Scavenger uses. The full scan consists of every plug-in that nessus is

capable of doing minus the DOS (Denial of Service) scans. The scan does not include

the denial-of-service plug-ins because the CSPO does not want to disrupt systems. The

DOS plug-ins have been tested to cause certain systems to crash and become

unresponsive, and that is not our goal. Also, for the full scans, we turn on the safety

feature which allows nessus to throttle a scan so it does not disrupt normal services on the

servers and/or clients. The other type of scan that Scavenger uses through nessus is what

the Cyber Security Program Office, CSPO, at Argonne likes to call the Low Hanging

Fruit Scan or LHF. This is a targeted list of vulnerability checks where there is known

exploit code out in the wild. Essentially, LHF is our high-risk vulnerabilities that could

allow local or remote root compromises with little or no effort. The CSPO uses multiple

information feeds to generate this list. For example, we use the external source like the

SysAdmin, Audit, Network, Security or SANS Institute top twenty list [2]. We also use

internal information sources to the Department of Energy. This list is reviewed on a

regular basis, based on patch releases and watching bug-track lists for major applications

used at the laboratory. This list is also shared throughout the Department of Energy

National Laboratory Complex for review. This list does vary slightly from lab to lab,

based on each lab’s installed application base. This list of LHF will also be available

once the project goes open source. A sample of the Low Hanging Fruit is shown in

Figure 1.

10

Figure 1: Sample LHF database

Additionally, Argonne not only has two levels of scanning, but it also has multiple

frequencies of scans. Also, because of the shear size of the ANL network, 3 class B

subnets, the Scavenger application has the capability of having multiple scanning nodes

feed a single reporting repository. The scanning nodes have been placed where scanning

traffic going over an internal firewall layer may impact performance. So instead of

scanning from outside a certain division, we place a scanner inside the divisional network

firewall. This way we can send the results file back to the central repository instead of

passing the entire scan traffic across their networks. For example, Scavenger has two

main scanner resources, one inside the firewall and one outside the firewall. This allows

us to perform what we like to call a pre- and post- conduit Scavenger scan. Then, the

main inside firewall scanner is broken down into smaller divisional scanners for divisions

that have more than 2,500 hosts. Argonne has an online form for system and network

administrators who are requesting services that will be available through the firewall.

The requests go through a formal process, which includes a Scavenger “health” check.

11

For example, let’s say an administrator needs a new web server to be allowed out to the

Internet. They go to the online form and fill out the necessary information for the request

for a conduit in the firewall. Once they submit the form Scavenger does a full scan from

inside the firewall and generates a report that is reviewed by the Cyber Office,

Networking, and other Managers to verify that the services requested are configured in a

secure manner. An example of this pre-conduit scan report is given in Figure 2.

Figure 2: Pre-conduit scan

After the report is reviewed and all is found to be acceptable, the conduit for the web

server is entered into the firewall. This is done through another process in the

Networking Group. Once the process has been completed, Scavenger is automatically

notified that a new system has been added to pass traffic through the firewall. What

happens next is that the same full Nessus scan from Scavenger is done but from outside

the firewall. This will give the reviewing committee a post-conduit installation view of

12

the host. It will verify that the conduit in the firewall was entered correctly and that only

the requested services are seen. An example of a post-conduit scan is shown in Figure 3:

Figure 3: Post-conduit scan

Once the internal and external views are reviewed and verified, the system is allowed to

have a conduit through the firewall, allowing web services to be accessible by the

Internet community.

 Another type of scan that Argonne has in the Scavenger system is referred to as

the Bi-Weekly Firewall scans. This scan type is done from outside the firewall, like the

post-conduit request scans, but scans all firewall conduit-enabled machines. The nessus

scanner uses the Full vulnerability setup as described earlier. This verifies on a bi-

weekly schedule that Internet accessible servers maintain a secure configuration.

 The next type of scan is what is called the 15-minute scan. This scan is fed from

the ARP tables that were described earlier in the text. What is generated from the ARP

database is a list of hosts that have never been seen before as a MAC/IP combination.

13

Every fifteen minutes, that list of hosts is scanned for LHF. This list consists of new

hosts that have never been seen by Scavenger before.

 One of the final types of scans is the 24-hour scan. This scan is also generated

from the ARP database. All the new systems that were seen in the previous 24 hours

AND systems that generated at least one packet of network traffic on any switch on the

network will get scanned at least once every 24 hours for LHF. This catches systems that

Scavenger has seen before, but does not fall into the 15-minute scans.

 Scavenger also does VPN scans. This allows Argonne to protect and assess

systems that are connecting to the VPN, which may consist of ANL configured machines

and/or home machines that may be grossly out of date. Scavenger is linked up to the

VPN concentrator that Argonne maintains. In real-time, once a user connects to the VPN

and is assigned an internal ANL IP address, it is scanned for LHF by Scavenger.

 The final scan type for Scavenger is the Manual Scan. This was a feature request

from the network administrators at ANL. A feature was added to Scavenger to allow a

system or network administrator to perform a nessus scan without having to maintain his

or her own local nessus scanner. This also allows reports and status of the scan to be kept

track of by the Scavenger system.

 These are the types of Scans that Argonne uses. These scan frequencies are not

hard-coded into Scavenger, so the configuration, frequency and depth of the scans are

completely configurable to serve networks of various topologies and sizes.

Scavenger Inner Workings:

 Now that you have an idea of how Scavenger works, how does Scavenger really

work? Here is what one will need to run Scavenger.

 First, a LINUX distribution of your favorite flavor of LINUX is required.

Hardware requirements will be based on how many nessus scanners you will want and if

you want to keep your nessus scanners separate from the Scavenger code and Database.

The beauty of this is that Scavenger is very scalable based on the LAMP technology

chosen. At the very least, you will need one box dedicated to Scavenger. Scavenger then

will need either a local copy of nessus installed and/or remote copies of nessus installed if

you wish to have internal and external scanner views relative to a firewall. This piece is

also very scalable: if you have large network space to scan, you can have multiple

instances of nessus installed on machines scattered throughout the network to decrease

scan times for large networks.

 Next, you will need a MySQL Database server. This, again, could be local to one

system, or you could use a MySQL Database server that is remote. The database is

needed to store the nessus results and provide the reporting features to the administrators

of the systems and network. The nessus scans, after they are complete, get fed into the

database for reporting, instance counts, and remediation tracking. The database, as with

any application, is the repository for the data to be used. The Scavenger database ERD

Diagram is shown in Figure 4.

14

Figure 4: Scavenger database schema

Next, are the pieces needed for main code of Scavenger. This is the Apache web

server, PHP (PHP: Hypertext Preprocessor), Perl, and associated MySQL modules for

PHP and Perl to allow these scripting languages to create connections back to the

MySQL database.

 An optional piece is the infrastructure of getting real time hosts to Scavenger.

This is really up to a Networking group. If you have a small set of hosts, Scavenger

could be configured to scan all hosts on a regular basis. However, if you have a large set

of IPs to scan, you may want to look at Cisco technologies that can provide Scavenger

with targeted scans for active and new hosts that show up on the network.

 Scavenger does not have authentication for the front-end built in. What is

recommended is to use the Apache Lightweight Directory Access Protocol (LDAP) plug-

in authentication module and restrict access to the main folder of the Scavenger front end

by an LDAP group and then use the LDAP server for authentication, like Open LDAP or

Microsoft Active Directory, for example.

 The frequency of the nessus scans for Scavenger is simply controlled by a cron

job on the LINUX server. Cron is the UNIX application that controls the scheduling of

15

automated scripts and tasks. So modifying the cron job will modify the frequency at

which Scavenger runs its scheduled scans.

 Once the Scavenger scans have taken place and are uploaded into the database, it

is now up to the system and network administrators to address the vulnerabilities that

were found. This is done by automatic notification to the administrators via email. Once

the administrators have received a notification by Scavenger to respond to a vulnerability,

it is up to the administrator to log into the front-end interface to address the vulnerability.

Scavenger does not fix vulnerabilities, but it is a vulnerability tracking system, so the

administrator will look at what vulnerabilities were found and provide an appropriate

answer. Possible responses the Administrator can make include Accept, False Positive

and Addressed. There are three possible outcomes.

1. Accept: The administrator accepts the vulnerability and the risk. For example, if

a web server is identified, there is an inherent risk to running web server. If the

administrator accepts that risk, he or she fills out a risk assessment form, which is

part of Scavenger, and a record is kept [9].

2. False Positive: The administrator deemed the check as being inaccurate and the

service is not running on the machine or there was an error with the scan result.

3. Addressed: The administrator fixed the vulnerability, applied a patch, or provided

a layer of protection to address the risk involved.

The typical protocol Scavenger follows is summarized here:

1. Read in the list of IPs to be scanned. This can either be hard coded or fed from

another technology like Cisco ARP table lists.

2. Feed the IP list to the proper Scavenger script to feed to Nessus

3. Scavenger will run Nessus in the correct mode and from the correct location

based on the type of scan

a. LHF vs. Full Scan

b. Inside vs. Outside Firewall

4. Scavenger will import the raw results of the scan into the MySQL database

5. Post-process the results:

a. If the vulnerability has been seen before, update the instance count of the

original vulnerability.

b. If the vulnerability has been marked as Accept, update the “last seen”

date of the accepted record. Last seen refers to when Scavenger last saw

a vulnerability: either new, accepted, or still outstanding.

c. If the vulnerability had been deemed as a false positive, throw the update

out.

d. If the vulnerability has a global auto-answer, auto-answer the

vulnerability. An example of a global auto-answer is if the divisional

administrator had a public Simple Network Management Protocol

(SNMP) string called “public” assigned to all his printers. Administrative

programs to query systems for certain types of information use the SNMP

protocol. Now, if the administrator does not want Scavenger to flag all

his/her printers as having an easily guessable public SNMP string, the

administrator can globally answer all the SNMP vulnerabilities for the

printers on their network. So even if new printers are configured and

16

found by Scavenger, if the global auto-answer is enabled for the

vulnerability, Scavenger will auto-answer on that administrator’s behalf.

This will continue to occur for all types of scans until the divisional

administrator decides to turn off that particular global auto-answer.

e. If the vulnerability has been marked addressed, unmark addressed and put

the vulnerability back in unanswered mode.

6. Send email to administrators with unanswered vulnerabilities based on the

configured time line of the notification

a. 15-minute

b. Bi-weekly Firewall

c. Daily Summaries

d. Other timed configurations based on the organization

7. Wait for answers from administrators

8. Do Daily Reporting to administrators and Cyber Office

a. Daily Global Summary Overview

b. Graphing output and trends

c. Other administrative notifications and graphs based on the organizations

need

Scavenger Reporting Features:

 One of Scavengers main features is the reports that it can generate. Microsoft

states that a vulnerability and penetration system must be able to display the results in a

manner that matches the risks assigned by the organization [4]. Since Scavenger is a

vulnerability tracking system, reports are very important. Scavenger satisfies the

requirements and planning suggested by Microsoft and Cisco for a penetration and

vulnerability testing application [3, 4]. There are a slew of reporting features in

Scavenger. The reports essentially fall into two groups. Administrative reports about the

overall heath of the laboratory, which is sent only to the CSPO office, and reports that are

given to the individual system and network administrators of vulnerabilities found in their

respective divisions. The reports are logically broken up into the same categories as the

scan types. The reports that local system administrators see are:

1. 15-minutes Scan reports, which are sent every 15 minutes until the vulnerability is

addressed in the Scavenger system. See Figure 5 for an example.

17

Figure 5: Example of a 15-minute report

2. Daily Summary Scan Reports, which are sent out every 24 hours. See Figure 6 for

an example.

Figure 6: Example of a 24-hour report

3. Bi-Weekly Firewall Scan Reports, which are sent out twice every week. See

Figure 7 for an example.

18

Figure 7: Example of a bi-weekly firewall scan report

4. VPN Scan Reports, which are sent out in real-time if a user with a vulnerable

system connects to the VPN. This report is a little special as it is sent to the end

user in addition to the network administrator who is responsible for that VPN

network. See Figure 8 for an example.

Figure 8: Example of a VPN report

19

There is also a set of reports designed to provide Administrators an overview of the

health of the system. The administrative reports include the following:

1. The daily LHF Report shows counts of open vulnerabilities based on the type of

scan which is sent to the CSPO to get an overall health of the laboratory. See

Figure 9 for an example

Figure 9: Daily LHF report

2. A set of graphs, which are generated on-demand with the newest numbers based

on the time of the web request. One of these graphs is the total number of

vulnerabilities experienced each day. See Figure 10 for an example.

20

Figure 10: Daily vulnerabilities chart

3. Another graph depicts how well certain divisions are responding to

vulnerabilities. The graph breaks down the vulnerabilities based on division. See

Figure 11 for an example.

Figure 11: Chart showing response by division

4. Lastly is the VPN graph, which shows how many connections out of the total had

LHF vulnerability. See Figure 12 for an example.

21

Figure 12: VPN vulnerability chart

These are the basic reporting features that are built into Scavenger. The beauty of this is

that custom reports and graphs can be created with just a little knowledge of SQL queries.

The frequency of the how often email reports are sent is based on a cron job. Each email

report I highlighted is a separate process, so they can be sent out at intervals that fit one’s

organization. So if notifying an administrator every fifteen minutes seems too extreme

for a LHF vulnerability, one can change the cronjob to notify every hour or as they see

fit.

Future of Scavenger:

 The future of Scavenger seems very promising. We have begun the process of

making Scavenger more portable. This way, it will be easier to package and install in a

new site and network infrastructure. We have also begun a campaign to start distributing

Scavenger to other national laboratories in the DOE complex. Furthermore, we have

begun using the Subversion package to keep track of development changes. Subversion

is an open source package for keeping track of development projects and code. In

addition to making Scavenger more portable and easier to install, we are migrating the

main back-end code from the PHP interpreter to the Perl interpreter. Perl has a couple

advantages over PHP. The first advantage is that the requirement for having Apache

installed with the PHP modules will no longer be required for the back-end code. This

allows the configuration of the scanning nodes to have less software being installed so

that the attack ‘footprint’ on the vulnerability scanning system is less. Also Perl has less

computing overhead than the command line PHP interpreter. PHP runs through the

Apache web server process, which is an inefficient way of executing code that is not

22

viewed on a browser. Another major upgrade is to rewrite all the SQL queries to support

the views that are available through MYSQL 5. This will decrease the query time for

large select statements that we join multiple tables together.

 A security upgrade to the Scavenger project will be how Scavenger sends out

email. Email notification is a major component. To make this feature more reliable, we

intend to include non-repudiation and encryption to the email. We are currently working

on giving the option of creating Pretty Good Privacy (PGP) key sets to digitally sign and

encrypt the vulnerability notifications to prevent email spoofing and to hide

vulnerabilities from unauthorized access through the email system.

 We are hoping to make this code completely open source in the near future. This

largely depends on the time dedicated to the project and priorities of Argonne and the

Argonne Cyber Security Office.

23

24

Works Cited:

[1] (2006, July 14). CSI/FBI Computer Crime and Security Survey. Retrieved October

15
th

, 2006, from the Computer Security Institute Website:

http://www.gocsi.com/forms/fbi/csi_fbi_survey.jhtml;jsessionid=2QHNTL4HTG440QS

NDLPCKHSCJUNN2JVN

[2] The Top 20 Most Critical Internet Security Vulnerabilities (Updated) - The Experts

Consensus. Retrieved October 15
th

, 2006, from The SANS Institute Website:

http://www.sans.org/top20/

[3] Andrew Whitaker, Daniel Newman (2006, November) Penetration Testing and

Network Defense. Indianapolis, IN: Cisco Systems Inc.

[4] Kevin Lam, David LeBlanc, and Ben Smith (2004) Assessing Network Security.

Redmond, WA: Microsoft Press

[5] Compliance Checks Frequently Asked Questions (FAQ). Retrieved October 15
th

,

2006, from the Nessus.org Website:

http://www.nessus.org/documentation/index.php?doc=compliance

[6] Introduction to Vulnerability Scanning. Retrieved October 15
th

, 2006, from the Net

Security Website: http://netsecurity.about.com/cs/hackertools/a/aa030404.htm

[7] vulnerability scanner. (n.d.). Wikipedia, the free encyclopedia. Retrieved November

12
th

, 2006, from Reference.com website:

http://www.reference.com/browse/wiki/Vulnerability_scanner

[8] Jordan Wiens (August, 4
th

, 2005) Vulnerability Assessment Scanner. Retrieved

October 15
th

, 2006, from the Network Computing Website:

http://www.networkcomputing.com/showitem.jhtml?docid=1615buyers

[9] Stephen Northcutt, Judy Novak (2002, September) Network Intrusion Detection:

Third Edition. Indianapolis, IN: New Riders Publishing

[10] Tony Bradley. Introduction to Vulnerability Scanning. Retrieved Nov. 19
th

, 2006,

from Networksecurity.com website:

http://netsecurity.about.com/cs/hackertools/a/aa030404.htm

[11] Jeff Forristal, Greg Shipley (January 8
th

, 2001) Vulnerability Assessment Scanners.

Retrieved Oct. 15
th

, 2006, from Network Computing Website:

http://www.networkcomputing.com/1201/1201f1b1.html

