

Securing the Rapid Application

Development (RAD)
Methodology

BY

Kividi Kikama Jr

Lewis University
December 8, 2010

 1

(This page has been intentionally left blank)

 2

TABLE OF CONTENT

ABSTRACT...3

INTRODUCTION

1.1 PURPOSE AND SCOPE..5

OVERVIEW OF SOFTWARE DEVELOPMENT

 2.1 HISTORY OF SOFTWARE DEVELOPMENT........................8

2.2 SOFTWARE DEVELOPMENT LIFE CYCLE9
2.3 STAGES OF THE SDLC...10

2.4 SDLC MODELS …………..13

2.5 FUTURE TRENDS...17

SOFTWARE SECURITY EXPLOITS

3.1 THREATS TO SOFTWARE SECURITY ………………………….19
3.2 IMPROVING SOFTWARE SECURITY …………………………..27

THE RAPID APPLICATION DEVELOPMENT METHODOLOGY (RAD)

 4.1 OVERVIEW...31

 4.2 PHASES OF RAD...32
4.3 FOUNDATION OF RAD..33

4.4 APPROPRIATE RAD PROJECTS.....................................35
4.5 BENEFITS OF RAD..36

4.6 DISADVANTAGES OF RAD..36

4.7 SECURING RAD..37
4.8 RAD IN ACTION – CASE STUDY …................................45

SUMMARY..41

WORKS CITED ...53

 3

ABSTRACT

Every organization, big or small, depends on some kind of software

application as part of its everyday operation. Whether it’s the software in the

cash register, the gas pump, or the e-commerce website, these applications

help the business to increase productivity and respond to the needs of a

larger customer base in an expedient and efficient manner. Software

development has been around for the last half century in one form or

another, and many of us are too young to remember a world where the

tedious tasks that we hardly give a second taught to were done manually.

The software development process is a critical part of an organization’s

success because the development of software is usually an attempt to

respond to a problem, address a shortcoming or to gain a competitive

advantage. The objective of software development is to not only resolve the

technical problems, but it also addresses the organizational problems and, in

the longer term, the business problems. Developing usable software requires

a well-defined process where all the parameters and objectives are clearly

defined. Developing applications, specifically web applications, requires

careful planning and a structured process in order to obtain desired results

in a timely and cost-effective manner.

The Software Development Lifecycle (SDLC) is just such a structured process

that is used by most application developers in order to respond to the

challenges that they are presented with by the business leadership. There

are several models of the SDLC in use by different organizations such as the

Waterfall Model, Spiral Model, Top-Down Model, Bottom-Up Model, and Rapid

Prototyping which is the subject of this paper.

 4

The evolution of SDLC models has gone hand-in-hand with advancements in

technology and continuous research done to address the shortcomings of

previous models. Another reason for the continued progress in the models of

SDLC is that the business leadership of many organizations, in their attempt

to cut costs and streamline operations, is putting a lot of pressure on

developers to reduce development time and provide a quicker turnaround on

projects. Often times, these projects are required to be completed at a lower

cost and without sacrificing quality. In response, agile methodologies such as

Rapid Prototyping and Extreme Programming (XP) have increased in

popularity among developers.

Rapid Application Development like most agile methodologies presents some

unique security concerns and most security methodologies are built for

traditional development methodologies, which are qualitatively and

quantitatively different from agile development methodologies (Alberto

Sillitti, 2010). It is therefore necessary to adapt the RAD methodology in

order to account for the shortcomings in the area of security by adding

simple but effective security measures in each phase of RAD. This paper will

introduce the activities aimed at improving the security of the RAD

methodology by baking security activities into the core of the development

process.

 5

CHAPTER ONE

INTRODUCTION

Building a secure software application involves incorporating carefully

planned activities in the design process. Consideration of security in the

System Development Life Cycle is essential to implementing and integrating

a comprehensive strategy for managing risk for all information technology

assets in an organization (Richard Kissel, 2008). This chapter explains why it

is necessary to account for security in the software development process.

1.1 Purpose and Scope

Software development has greatly improved the quality of our lives. It has

made the world feel smaller and has increased our connectivity to one

another. This connectivity has not only been positive, it has also unearthed

some unintended consequences that individuals as well as organizations

have to fight against. Software development has eroded the boundaries that

once existed due to time, location and distance. Nowadays, transcontinental

transactions are performed in a matter of seconds, blurring the dividing lines

that once separated the different entities.

Despite the many benefits of Software Development there are side effects

that can become a burden if they are not handled correctly. The same

software that is used by the organization to increase productivity has

become an access point for criminals seeking to penetrate the organization

in order to steal or sabotage critical assets. As software has increased in

usability and complexity, so too have exploitable weaknesses and

vulnerabilities. Studies have shown that the number of software

vulnerabilities continue to trend upward at an alarming rate. The number of

 6

vulnerabilities reported to CERT from 1997 through 2006 has shown a steep

increase from year to year creating an urgent situation for organizations to

implement adequate software security measures in order to mitigate the

risks and protect the critical infrastructures that run our businesses (Allen,

2007). Figure 1.1 shows the number of vulnerabilities reported from 1997 to

2006.

Figure 1.1 Vulnerabilities reported by year (Source: McGraw, 2006)

In the past three months, over 540 million attacks were blocked in 228

countries. Last quarter, even Norfolk Island with a population of 2,141

appeared on Kaspersky Lab’s antivirus radar. During the quarter, the average

number of infection attempts increased globally by 4.5% per month

(Namestnikov, 2010).

 7

In the Global Security Survey report conducted in 2007 by Deloitte, 87

percent of respondents cited poor software development quality as a top

threat for the next 12 months (Allen, 2007). This is as true today as it was 3

years ago and creates the need to include security as part of an

organization's software development life cycle in order to ensure that these

vulnerabilities are handled appropriately.

The purpose of this paper is to serve as a guideline for Software Developers

and Project Managers on how to integrate security into the Software

Development Lifecycle (SDLC) RAD methodology while taking into account

the faster turnaround from conception to market that is a characteristic of

this methodology. I will present ways to introduce security measures within

each phase of the model which, in turn, will ensure that the end process is

secured. I will show how incorporating security activities into the SDLC will

increase the security posture of the organizations by ensuring stronger

security, reducing the likelihood and/or impact of exploited vulnerabilities. I

will also show that the placement of correct security measures in each phase

of the RAD methodology is more beneficial when done during the

development process than attempting to add it at a later stage.

Furthermore, I will present evidence to show that the end result of inserting

correct security measures in the SDLC is the reduction in overall cost to the

organization.

 8

CHAPTER TWO

SOFTWARE DEVELOPMENT

2.1 History of Software Development

Most people under 50 years old have never known a world without

automation. In earlier times, most business processes required manual

intervention by a multitude of people and resources, thereby increasing the

production time and decreasing the quality of services that businesses where

able to offer. Software development as we know it today dates back to the

late 1940’s and early 1950’s and was a result of the need for businesses to

streamline their operations and increase productivity and the quality of their

products and services . The productivity of software projects has increased

about 3 times since 1970. In 1970, COBOL was the state of the art,

mainframes were in vogue, and the PC was nothing more than a dream of

software engineers. The internet didn’t exist. By year 2000, end-user

computing exploded. Software developers are developing in languages like

Java, C++, ASP, and other visual languages. No longer are software

applications being developed for back office operations, but software

applications are being used as marketing tools and competitive weapons.

Applications are increasingly delivered to customers via the internet

(Longstreet, 2006).

From its humble beginnings, software development has gone through

tremendous growth over the years, increasing in size, complexity, and

functionality, to the point that many have a hard time imagining how things

were done before software development became a common practice. The

rise of software development to the point of becoming an integral part of the

business culture has been greatly influenced by major developments and

discoveries in hardware development and the rise of the Internet. These

 9

developments led to an increase in demand for reliable software to run these

new machines, and, in response, many software were written usually

without any established model. It was a little difficult to develop software

without a proper model, so the NATO Science Committee sponsored two

major software conferences, one in 1968 and the other in 1969 that many

consider as official birth period of software engineering (History of software

development, 1997). The attendees at these meetings were senior figures in

computing. They discovered a remarkable set of similarities in the problems

that they were having trouble dealing with. They thus legitimatized Software

Engineering as the study of the broad range of problems encountered in

developing software. The 1968 NATO Conference also devoted considerable

attention to many issues that are quite familiar to us today. Thus the issue

of how to create processes that could be expected to be effective in

producing high quality software on schedule and within budget was

highlighted (Osterweil, 2007).

The advent of the World Wide Web opened many doors for the field of

Software Engineering. The World Wide Web brought out opportunities like

never before with many programmers hired to implement web applications

that have taken most business to the virtual sphere. In addition, the internet

has also opened paths for hackers to attack the infrastructure of many

organizations through their public-facing web applications by exploiting

vulnerabilities in their software.

2.2 Software Development Life Cycle

Software development (also known as Application Development; Software

Design, Designing Software, Software Engineering, Software Application

Development, Enterprise Application Development, Platform Development) is

the development of a software product in a planned and structured process.

 10

This software could be produced for a variety of purposes. The three most

common purposes are to meet specific needs of a specific client/business, to

meet a perceived need of some set of potential users (the case with

commercial and open source software), or for personal use (e.g. a scientist

may write software to automate a mundane task) (Software development,

2010).

The Software Development Life cycle (SDLC) is a structured business

process that is used by many organizations that build software. The SDLC

has been around since the 1960’s and has morphed into several versions

over time as many organizations have adapted the process to fit their

specific development needs. From the sequential Waterfall model which was

the original version to the iterative models such as the Spiral model and on

to the agile models such as Extreme Programming there are many models in

use today. The goal of a good SDLC process is to capture, verify, and

implement all the requirements needed to make the application useful to the

organization (Purcell, 2007). The SDLC requires the involvement of people

from many disciplines such as architects, analysts, programmers and users

working together toward a common goal. Often times, the success of the

final product depends on the choice of model, so organizations need to be

mindful of selecting the model that fits their situation. Factors such as time,

skills, and experience in software development play a part in determining

which model will work for software development.

2.3 Stages of the SDLC

The Standard SDLC consists of five stages as shown in figure 2.1. These

stages can be customized according to the specific model.

 11

Figure 2.1 The SDLC – A Conceptual View (Source: Richard Kissel, 2008)

II. The Five SDLC Phases (Richard Kissel, 2008)

The five phases of the SDLC, as defined by NIST SP 800-64, are as follows:

1. Initiation

The main objective of this phase is to identify all of the requirements needed

to design or purchase the system. This is accomplished by first determining

the reason for the system, identifying the business problem that the project

is attempting to resolve. The second activity covered in this phase is to

identify all the stakeholders that are affected by the undertaking. Steps in

this phase include establishing the basic system idea, preliminary

requirements definition, feasibility assessment, technology assessment, and

management signoff to continue to the next phases (Purcell, 2007).

2. Acquisition/Development

The main objective of this phase is to convert the functional and technical

requirements from the initiation phase into detailed plans for the proposed

system that can be interpreted by software programmers. Steps in this

phase include analyzing the results from interviews, developing mock ups

 12

and use cases, and translating the results into sequence diagrams, activity

diagrams, state diagrams. Another activity that’s prevalent is this stage is

the refinement of the user interface design to include more details. At the

end of this phase the development team should decide on the direction for

implementing the best solution that responds to the business problem

outlined in the initiation phase.

3. Implementation

The main objective of this phase is to create a working application using the

analysis and design recommendations from the previous steps. Steps in this

phase include the actual coding of the information system by programmers,

preliminary testing and debugging to ensure that everything is working as

expected. User functionality is tested through user acceptance testing,

Quality Assurance testing, load testing, and other types of technical testing.

The end result of this phase is the integration of the completed system into

the production environment.

4. Operations/Maintenance

In this stage the system is live in the production environment; the main

objective now is to make sure that it continues to function as planned. In

order to ensure that the system remains functional preventative and

maintenance steps must be performed in a structured way. Steps in this

phase include implementing patches, and correcting bugs that are

discovered along the way. It does not include functionality upgrades or

additions; those must follow the normal development phases starting from

initiation. As long as the system exists in a production environment it must

be maintained. The end result of a proper implementation of this phase is a

dependable system that runs with minimal interruptions.

 13

5. Disposition

The main objective of this phase is to remove the system from the

production environment in a structured way. This occurs once the system’s

functionalities are longer needed or a replacement system has been created.

Steps in this phase include archiving the existing system, and performing a

switch to a new system by minimizing downtime. The end result of this

phase is the complete removal and retirement of the system.

2.4 SDLC Models

There are many ways of implementing the Software Development Life Cycle

(SDLC) in an organization. Each organization has its own set of realities so a

standard one fits all SDLC is not realistic. Often times in order to respond to

their specific needs organizations implement their own version of SDLC. The

Software Development Life Cycle can be carried out in a number of different

ways and these ways are called models. The SDLC models have evolved

over the years as technological advances have shown the limitation and

weaknesses of older models. From the linear-sequential models such as the

Waterfall, through the iterative models, newer agile models have drawn from

and improved on the best aspects of older models creating models that

provide flexibility and dynamism.

A software life cycle model depicts the significant phases or activities of a

software project from conception until the product is retired. It specifies the

relationships between project phases, including transition criteria, feedback

mechanisms, milestones, baselines, reviews, and deliverables. Software life

cycle models describe the interrelationships between software development

phases. The common life cycle models are (Bezroukov, 2009):

 14

Waterfall Model

The Waterfall Model is the oldest and most well-known SDLC model. It

involves a sequential step-by-step process from requirements analysis to

maintenance (Purcell, 2007). The Waterfall model has many advantages

including well-defined and understood requirements, an often times there

ample time is set aside for the project. The main disadvantage of Waterfall

model is its lack of flexibility. After project requirements are gathered in the

first phase, there is no formal way to make changes to the project as

requirements change or more information becomes available to the project

team. During a normal development process requirements almost always

change and the rigidity of the Waterfall model often leads to an

implementation of the product that is obsolete as it goes into production.

The Waterfall Model should not be used for software development projects

where requirements are not well-known or understood by the development

team, the risk the project will fail is high. Additionally, not all the

errors/problems related to a phase are resolved during the same phase.

There is a tendency to push the risk down the line and this result in a

situation where major part of the risk happens or rises only towards the end

of the project, especially during the implementation phase, where the cost to

rectify these risks also rises accordingly.

Spiral Model

In the Spiral SDLC Model, the development team starts with a small set of

requirements and goes through each development phase (except Installation

and Maintenance) for those set of requirements. Based on lessons learned

from the initial iteration (via a risk analysis process), the development team

adds functionality for additional requirements in ever-increasing "spirals"

until the application is ready for the Installation and Maintenance phase

 15

(production). Each of the iterations prior to the production version is a

prototype of the application (Purcell, 2007).

The Spiral model was developed to respond to the limitations encountered in

the Waterfall model by introducing a formal way to make changes to the

project as requirements change. The advantages of the spiral model speak

to the approach’s ability to lead to continuous refinement. Specifically, the

iterative approach used in this model allows development to begin even

when all the system requirements are not known or understood by the

development team. User feedback is used to make sure the project remains

on track. The risk analysis step provides a formal method to ensure the

project stays on track even if requirements do change. If new techniques or

business requirements make the project unnecessary, it can be canceled

before too many resources are wasted (Purcell, 2007).

The implementation of a project using the Spiral model requires highly

skilled people in the many areas such as planning, risk analysis and

mitigation, development, customer relation. Often times the process needs

to be iterated more than once in order to arrive at the best solution. This can

make the process more time consuming and somehow expensive.

Top-Down Model

In the Top-down SDLC model high-level requirements are documented, and

programs are built to meet these requirements. Then, the next level is

designed and built (Purcell, 2007). The advantage of the Top-Down model is

the ability to focus on the big picture without getting tied down by a specific

detail of the implementation. By successfully designing the major

components at a high level, the hope is that detail implementation will

become routine or seamless as thing fall into place. A major problem with

 16

the Top-down model is that real system functionality is not added and

cannot be tested until late in the development process. If problems are not

detected early in the project, they can be costly to remedy later.

Bottom-Up Model

In the Bottom-Up SDLC model, the lowest level of functionality is designed

and programmed first, and finally all the pieces are integrated together into

the finished application (Purcell, 2007). The main advantage of the Bottom-

Up model is that the most complex components are developed and tested

first. There is a level of assurance that the functionality at the lowest level

work correctly prior to constructing the overall system. The Bottom-up

model also encourages the development and use of reusable software

components that can be used multiple times across many software

development projects. The problem with the Bottom-Up model is that there

is no assurance that the working components will work together correctly in

the finished system. For this to be the case extreme amount of coordination

is required to make sure that the inputs and outputs of each component

satisfies the needs of the adjoining component. Lack of coordination can lead

to a failed system where the individual working components are unable to

provide the services necessary for the overall system to be function

correctly.

Hybrid Model

The Hybrid SDLC model combines aspects of the top-down and bottom-up

models in order to use the advantages of both models and eliminate the

disadvantages of each. This approach allows the development team to make

changes to the system early in the project if problems occur with the high-

risk components. Many of the SDLC models are a variation of the Hybrid

Model.

 17

Rapid Prototyping

The main idea of this model is to use prototypes built quickly to present to

the application users as a starting point for an iterative development

process. The Rapid Prototyping model is used for graphical user interface

(GUI) applications such as web-based applications (Purcell, 2007). This

model is covered in greater detail in Chapter 4 as it is the central aspect of

the Rapid Application Development methodology.

Other Models

Other SDLC models include Model Driven Development, Chaos Model, Agile

Programming Model, and many others. One significant trend in the

development of new SDLC models is the integration of software design tools

into the programming environment (Purcell, 2007). Software development

tools such as Visual Studio are using prepackaged code modules saved in

classes that programmers can reference. These classes contain

functionalities such as databases connection, and login forms that

programmers had to build for themselves in years past.

2.5 Future Trends

Software engineering is a relatively young field that is evolving at an

exponential pace with projected future developments that many of us would

have considered as science fiction only a few years ago. A lot of the growth

can be attributed to the contribution of the internet which has expanded the

horizon of development possibilities. There are many trends that could

change the face of business in the upcoming years, and in most cases

software development in playing a crucial part in the realization. One such

trend is Cloud Computing. Cloud Computing is a general term for anything

that involves delivering hosted services over the Internet. These services are

broadly divided into three categories: Infrastructure-as-a-Service (IaaS),

 18

Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) (Cross-site

scripting, 2004). Saas is one type of Cloud Computing that is directly affecting

Software Development. This type of Cloud Computing delivers a single

application through the browser to thousands of customers using a

multitenant architecture. On the customer side, it means no upfront

investment in servers or software licensing; on the provider side, with just

one app to maintain, costs are low compared to conventional hosting (Eric

Knorr, 2010).

As an integral part of the business environment, it is critical to ensure the

software that we use is protected from any intrusion and disruptions.

The increasing dependence on software to get critical jobs done means that

software's value no longer lies solely in its ability to enhance or sustain

productivity and efficiency. Instead, its value also derives from its ability to

continue operating dependably even in the face of events that threaten it.

The ability to trust that software will remain dependable under all

circumstances, with a justified level of confidence, is the objective of

software assurance. Software assurance has become critical because

dramatic increases in business and mission risks are now known to be

attributable to exploitable software (McGraw, 2006). We will examine way to

ensure that the software that we build continue to function as intended

despite the many risks both internal as well as external to the SDLC.

 19

CHAPTER THREE

SOFTWARE SECURITY EXPLOITS

Gartner report estimates that it costs about $1 million a year on average for

a company with 2,500 to 3,000 machines to patch its software and according

to David Rice, former cryptographer for the NSA and Navy, author of

Geekonomics: The Real Cost of Insecure Software, the total economic cost of

security flaws in software is around 180 billion dollars a year in the U.S

(Greenberg, 2008). It is therefore imperative to make sure that the software

that is brought to market is reliable and secure. One way of ensuring

security is to understand how software can be exploited and to put in place

mechanisms to avoid those pitfalls.

When developing an application it is important to have an understanding of

the attacker’s point of view and to understand the limitations of your

system. An understanding of the attacker’s tactics allows the developer to

implement effective countermeasures that will make it more challenging for

the attacker to compromise your system. This chapter examines the

common ways that attackers successful penetrate systems and provides an

analysis of software security by examining threats, vulnerabilities, and

attacks.

3.1 Threats to Software Security

Computer systems are constantly under threat, the software that allows

organizations to function more effectively have also become the point of

attacks. The threat to software security can be categorized into two groups:

1. Threats during development (mainly insider threats): A software

engineer can sabotage the software at any point in its development life

cycle through intentional exclusions from, inclusions in, or

 20

modifications of the requirements specification, the threat models, the

design documents, the source code, the assembly and integration

framework, the test cases and test results, or the installation and

configuration instructions and tools (McGraw, 2006).

2. Threats during operation (both insider and external threats):

Any software system that runs on a network-connected platform is

likely to have its vulnerabilities exposed to attackers during its

operation. Attacks may take advantage of publicly known but

unpatched vulnerabilities, leading to memory corruption, execution of

arbitrary exploit scripts, remote code execution, and buffer overflows.

Software flaws can be exploited to install spyware, adware, and other

malware on users' systems that can lie dormant until it is triggered to

execute (McGraw, 2006).

In order for a threat to become a danger for an application, there must be

vulnerability in the system that it can exploit. Table 3.1 shows some

common software vulnerabilities and the threats that are associated with

them. During the last few years, the number of vulnerabilities being

discovered in applications is far greater than the number of vulnerabilities

discovered in operating systems. As a result, more exploitation attempts are

recorded on application programs. The most "popular" applications for

exploitation tend to change over time since the rationale for targeting a

particular application often depends on factors like prevalence or the inability

to effectively patch (Top Cyber Security Risks , 2009).

Table 3.1 Threats by Application Vulnerability Category (Source: (J.D. Meier, 2003))

Category Threats

Input validation Buffer overflow; cross-site scripting; SQL injection;

canonicalization

Authentication Network eavesdropping; brute force attacks;

 21

dictionary attacks; cookie replay; credential theft

Authorization Elevation of privilege; disclosure of confidential data; data

tampering; luring attacks

Configuration

management

Unauthorized access to administration interfaces; unauthorized

access to configuration stores; retrieval of clear text configuration

data; lack of individual accountability; over-privileged process

and service accounts

Sensitive data Access sensitive data in storage; network eavesdropping; data

tampering

Session management Session hijacking; session replay; man in the middle

Cryptography Poor key generation or key management; weak or custom

encryption

Parameter

manipulation

Query string manipulation; form field manipulation; cookie

manipulation; HTTP header manipulation

Exception management Information disclosure; denial of service

Auditing and logging User denies performing an operation; attacker exploits an

application without trace; attacker covers his or her tracks

The top 10 information security threats for 2010 according to Perimeter E-

Security are: Malware, Malicious insiders, Exploited vulnerabilities, Careless

employees, Mobile devices, Social networking, Social engineering, Zero-day

exploits, Cloud computing security threats, and Cyber espionage (Top 10

information security threats for 2010, 2010). In the following section we are

going to examine some of these threats in order to get an understanding of

how they are used to compromise a system. Web applications in particular

are often subjected to the threats highlighted above. Attacks against web

applications constitute more than 60% of the total attack attempts observed

on the Internet. These vulnerabilities are being exploited widely to convert

trusted web sites into malicious websites serving content that contains

client-side exploits. Web application vulnerabilities such as SQL injection and

Cross-Site Scripting flaws in open-source as well as custom-built applications

account for more than 80% of the vulnerabilities being discovered (Top

 22

Cyber Security Risks , 2009). Table 3.2 shows the ten most common

application vulnerabilities detected on users’ computers.

Table 3.2. Ten most common vulnerabilities detected on users’ computers (Source: Namestnikov, 2010)

№ Secunia

ID

Change Vulnerability Impact Percentage

of users

affected

Release

date

Rating

1 SA

38805

7 Microsoft Office

Excel Multiple

Vulnerabilities

System

access,

execution of

arbitrary

code with

local user

privileges

39.45% 2009-

06-09

Highly

Critical

2 SA

37255

new Sun Java JDK / JRE

Multiple

Vulnerabilities

Security

bypass

38.32% 2010-

02-12

Highly

Critical

3 SA

35377

-2 Microsoft Office

Word Two

Vulnerabilities

System

access,

execution of

arbitrary

code with

local user

privileges

35.91% 2010-

03-09

Highly

Critical

4 SA

38547

-1 Adobe Flash Player

Domain Sandbox

Bypass

Vulnerability

Security

bypass

30.46% 2009-

04-03

Moderately

Critical

5 SA

31744

1 Microsoft Office

OneNote URI

Handling

Vulnerability

System

access,

execution of

arbitrary

code with

local user

privileges

27.22% 2007-

01-09

Highly

Critical

6 SA

34572

-2 Microsoft

PowerPoint

OutlineTextRefAtom

Parsing

Vulnerability

System

access,

execution of

arbitrary

code with

local user

privileges

21.14% 2008-

09-09

Extremely

Critical

7 SA

39272

new Adobe Reader /

Acrobat Multiple

Vulnerabilities

System

access,

execution of

arbitrary

code with

21.12% 2010-

04-04

Highly

Critical

 23

local user

privileges

Cross-site

scripting

8 SA

29320

2 Microsoft Outlook

"mailto:" URI

Handling

Vulnerability

System

access,

execution of

arbitrary

code with

local user

privileges

19.54% 2008-

03-11

Highly

Critical

9 SA

39375

new Microsoft Office

Publisher File

Parsing Buffer

Overflow

Vulnerability

System

access,

execution of

arbitrary

code with

local user

privileges

16.08% 2010-

04-13

Highly

Critical

 SA

37690

-1 Adobe

Reader/Acrobat

Multiple

Vulnerabilities

System

access,

execution of

arbitrary

code with

local user

privileges

Cross-site

scripting

15.57

SQL Injection

SQL Injection is an attack technique used to exploit web sites by altering

backend SQL statements through manipulating application input (Web

Security Glossary, 2004). SQL Injection happens when a developer accepts

user input that is directly placed into a SQL Statement and doesn't properly

filter out dangerous characters. This can allow an attacker to not only steal

data from your database, but also modify and delete it. Certain SQL Servers

such as Microsoft SQL Server contain Stored and Extended Procedures

(database server functions). If an attacker can obtain access to these

Procedures it may be possible to compromise the entire machine. Attackers

commonly insert single quotes into a URL's query string, or into a forms

input field to test for SQL Injection. SQL Injection on the internet can more

 24

or less be divided into two sub-categories: Legitimate SQL Injection and

Malicious SQL Injection. Many web applications on the Internet still use "SQL

Injection" for their normal functionality. The web applications that

legitimately use SQL Injection are guaranteed to be vulnerable to the tools

and techniques used by attackers to perform Malicious SQL Injections. The

servers that house these applications may have a higher compromise rate

not only because they are known to be vulnerable, but also because they

need to distinguish between legitimate and malicious injects to identify

attacks (Top Cyber Security Risks , 2009).

Cross-Site Scripting

Cross-site scripting (XSS) is a security exploit in which the attacker inserts

malicious coding into a link that appears to be from a trustworthy source.

When someone clicks on the link, the embedded programming is submitted

as part of the client's Web request and can execute on the user's computer,

typically allowing the attacker to steal information.

Web forms that dynamically return an error message including user input

data make it possible for attackers to alter the HTML that controls the

behavior of the form and/or the page. Attackers do this in a number of ways,

for example by inserting coding into a link in a forum message or in a spam

message. The attacker may use e-mail spoofing to pretend to be a trusted

source.

Like other Web-based exploits, such as SQL injection, much of the blame for

cross-site scripting is placed on the insecure applications that make it

possible. Web server applications that generate pages dynamically are

vulnerable to a cross-site scripting exploit if they fail to validate user input

and to ensure that pages generated are properly encoded. A vulnerability

that enables cross-site scripting is sometimes referred to as an XSS hole.

 25

To protect against cross-site scripting, experts recommend that Web

applications should include appropriate security mechanisms and servers

should validate input as a matter of course (cross-site scripting, 2004).

Zero-Day Vulnerability

A zero-day vulnerability occurs when a flaw in software code is discovered

and code exploiting the flaw appears before a fix or patch is available. Once

a working exploit of the vulnerability has been released into the wild, users

of the affected software will continue to be compromised until a software

patch is available or some form of mitigation is taken by the user.

The "File Format Vulnerabilities" continue to be the first choice for attackers

to conduct zero-day and targeted attacks. Most of the attacks continue to

target Adobe PDF, Flash Player and Microsoft Office Suite (PowerPoint, Excel

and Word) software. Multiple publicly available "fuzzing" frameworks make it

easier to find these flaws. The vulnerabilities are often found in 3rd party

add-ons to these popular and wide-spread software suites, making the

patching process more complex and increasing their potential value to

attackers. There is a heightened risk from cyber criminals, who can discover

zero-day vulnerabilities and exploit them for profit (Top Cyber Security Risks

, 2009).

Buffer Overflow

A Buffer Overflow is a flaw that occurs when more data is written to a block

of memory, or buffer, than the buffer is allocated to hold. Exploiting a buffer

overflow allows an attacker to modify portions of the target process’ address

space. The attacker’s goal is almost always to control the target process’

execution. This is accomplished by identifying a function pointer in memory

that can be modified, directly or indirectly, using the overflow. When such a

pointer is used by the program to direct program execution through a jump

 26

or call instruction, the attacker-supplied instruction location will be used,

thereby allowing the attacker to control the process.

Buffer Overflows can be categorized according to the location of the buffer in

question, a key consideration when formulating an exploit. The two main

types are Stack-Based Overflow and Heap-Based Overflow. Buffers can be

located in other areas of process memory, though such flaws are not as

common (Auger, 2010).

Buffer overflow has become one of the preferred attack methods for writers

of viruses and Trojan horse programs. Crackers are adept at finding

programs where they can overfill buffers and trigger specific actions running

under root privilege -- say, telling the computer to damage files, change

data, disclose sensitive information or create a trapdoor access point (Kay,

2003).

 Email Attacks

Waves of targeted email attacks, often called spear phishing, are exploiting

client-side vulnerabilities in commonly used programs such as Adobe PDF

Reader, QuickTime, Adobe Flash and Microsoft Office. This is currently the

primary initial infection vector used to compromise computers that have

Internet access. Those same client-side vulnerabilities are exploited by

attackers when users visit infected web sites. Because the visitors feel safe

downloading documents from the trusted sites, they are easily fooled into

opening documents and music and video that exploit client-side

vulnerabilities. Some exploits do not even require the user to open

documents. Simply accessing an infected website is all that is needed to

compromise the client software. The victims' infected computers are then

used to propagate the infection and compromise other internal computers

and sensitive servers incorrectly thought to be protected from unauthorized

access by external entities. In many cases, the ultimate goal of the attacker

 27

is to steal data from the target organizations and also to install back doors

through which the attackers can return for further exploitation. On average,

major organizations take at least twice as long to patch client-side

vulnerabilities as they take to patch operating system vulnerabilities (Top

Cyber Security Risks , 2009).

3.2 Improving Software Security

 It is impossible to build defect-free software no matter how security-

conscious we are and no matter our expertise. The idea of software security

is to minimize the risks associated with the use of the particular software. In

order to win in this constant ongoing battle, project teams must integrate

security into the development of the software and put in place mechanisms

to continually improve and respond to threats as they come. Secure software

is software designed with security in mind, developed with security controls

and deployed in a secure state. While it might have the potential of being

breached, the repercussion of a breach is greatly diminished. Secure design

and architecture, secure development with security controls built in by

default, and secure deployment or release, all work together to minimize the

impact of software vulnerability that gets exploited (Paul, Software

assurance: embedding security into the software development

lifecycle.(SOFTWARE WORLD INTELLIGENCE), 2008)

 A number of factors influence how likely software is to be secure. For

instance, software vulnerabilities can originate in the processes and practices

used in its creation. These sources include the decisions made by software

engineers, the flaws they introduce in specification and design, and the

faults and other defects they include in developed code, inadvertently or

intentionally. Other factors may include the choice of programming

languages and development tools used to develop the software, and the

configuration and behavior of software components in their development and

 28

operational environments (McGraw, 2006). Software developers must be

trained to use and adhere to correct security development and coding

standards. They must be able to understand the possible vulnerabilities and

the risks they present for the organization.

Software that has been developed with security in mind generally reflects

the following properties throughout its development life cycle:

1.Predictable execution: There is justifiable confidence that the

software, when executed, functions as intended. The ability of malicious

input to alter the execution or outcome in a way favorable to the

attacker is significantly reduced or eliminated.

2.Trustworthiness: The number of exploitable vulnerabilities is

intentionally minimized to the greatest extent possible. The goal is no

exploitable vulnerabilities.

3.Conformance: Planned, systematic, and multidisciplinary activities

ensure that software components, products, and systems conform to

requirements and applicable standards and procedures for specified uses

(McGraw, 2006).

Understanding how the SDLC process works allows us to put in place the

necessary safeguards to ensure that vulnerabilities are minimized and each

threat is accounted for. For the SDLC process to be secure, security related

activities must be incorporated into each phases during the development of

the application. These activities must be based on the security needs of the

organization as defined in the project requirements. The goal of each

security activity must coincide with the objectives of the CIA triangle. The

development team should use all security controls that can improve the

confidentiality, integrity, and availability. These controls can be

 29

administrative controls, physical controls, or technical controls. For example

providing security training of software developers can be an effective

administrative control. When developers are trained correctly, they will more

likely to make good design decision from the start therefore reducing the

vulnerabilities.

Testing can be an effective control and it must be integrated in the SDLC in

order to improve security. Different software development models will focus

the test effort at different points in the development process. Newer

development models, such as Agile, often employ test-driven development

and place an increased portion of the testing in the hands of the developer,

before it reaches a formal team of testers. In a more traditional model, most

of the test execution occurs after the requirements have been defined and

the coding process has been completed (Software testing, 2010).

 The organization must develop policies and standards and communicate

these to each project team member and have them pledge that they will

adhere to the standard. Policies, standards, and procedures should be

formulated to address software development methodology and establish

practical built-in security features. Some examples include identification and

authentication policy, remote access policy, use of company resources policy,

software security standards, data classification standards, encryption

standards, logging and monitoring standards and disaster recovery and

business continuity standards. These policies must be enabled by processes

that span the development lifecycle and ensure continuity of security

measures, while all must be managed by people with apt security skills

(Paul, Software assurance: embedding security into the software

development lifecycle.(SOFTWARE WORLD INTELLIGENCE), 2008).

 It is only by following the above prescription that software can be considered

reliable and secure. Software security cannot be accidental; it must be

 30

intentional. The most critical difference between secure software and

insecure software lies in the nature of the processes and practices used to

specify, design, and develop the software (McGraw, 2006).

 31

CHAPTER FOUR

THE SECURE RAPID APPLICATION DEVELOPMENT

METHODOLOGY (S-RAD)

RAD (rapid application development) is a concept that products can be

developed faster and of higher quality through:

 Gathering requirements using workshops or focus groups

 Prototyping and early, reiterative user testing of designs

 The re-use of software components

 A rigidly paced schedule that defers design improvements to the next

product version

 Less formality in reviews and other team communication

(What is rapid application development, 2010)

Having gained a deeper understanding of the Software development process

and the security challenges that development teams face, we are now ready

to jump into the heart of our project. This chapter will focus on the

presenting the traditional RAD approach in detail and introducing ways to

improve it. I will present a new variation of Rapid Application Development

which I’m calling S-RAD or Secure Rapid Application Development that

makes security an integral part of the development process.

4.1 Overview

The accelerating pace and cost-reduction of software development driven by

business pressures is greatly impacting the development process and

subsequently the end product. In a recent ExecutiveBrief Software

Development Trends Survey of more than 500 senior-level business leaders

and software development professionals, when asked about their top

software development priorities for 2010, one-third of respondents identified

 32

reducing operational cost and expenses among their top priorities. It was

also evident from this survey that methodologies that fall in the agile

category were becoming more prominent. The Agile approach increased its

dominance as the software development methodology of choice with over

one-half selecting its use as their preferred method, notably up from 42% in

2009. Iterative was the second most selected methodology with 13% giving

it their top choice (ExecutiveBrief Software Development Trends Survey

Indicates Promising Business Environment for 2010, 2010). The oldest and

best known agile methodology is the Rapid Application Development (RAD)

which is based on the rapid prototyping model of the SDLC. RAD is a linear

sequential software development process model that emphasizes an

extremely short development cycle using a component-based construction

approach. If the requirements are well understood and defined, and the

project scope is constrained, the RAD process enables a development team

to create a fully functional system within very short time period often times

without compromising usability, features, and/or execution speed

(Ravindran, 2009). RAD involves constant evaluation and feedback in an

iterative loop aimed at improving the quality of the product.

4.2 Phases of RAD

The RAD model has the following phases:

1. Requirement Planning Phase: This is the stage where the

objectives, functionality, and scope are established. In this step the

development team meets to develop a high level list of initial

requirements as well as determine the project scope. At the conclusion

of this step the development team will have a clearer picture of what

information is generated, who generates it, and who process. This

 33

information is used to develop the initial list of features and the way

they should function as a unit.

2. User Design Phase: In this step the development team which is

comprised of the main stakeholders meets to plan how the essential

parts of the system should work. The end result of this step is a design

document depicting layouts of the system as well as business rules,

test plans.

3. Construction Phase: In this step the prototype is converted into a

functional application. At this stage actual coding occurs, the

application developers add the functionalities to the prototype. This is

done in an iterative cycles of development, testing, requirements

refining, and development again, until the application is complete.

4. Cutover Phase: In this stage the final user testing and training is

done and decisions are made on the publication of the application

system. This step involves a review of the constructed system by the

stakeholders to determine whether it meets their expectations.

Features that meet expectations are sent for publication whereas for

features that fall short of expectations are reentered into an iterative

design loop.

4.3 Foundation of RAD

The fundamental elements RAD that distinguish it from other methodologies

are prototyping, iterative development, time boxing, team members,

management approach, and RAD tools.

 34

Prototyping

One the earlier steps in the RAD methodology is the development of a

prototype system that is used by the development team to refine the

requirement. The initial prototype is usually a simplified version of the

finished product that is put together quickly using Computer Aided Software

Engineering CASE tools. The focus of the prototype is to convert requirement

into a model.

Iterative Development

Iterative development is the process of adding functionality to a system at

each cycle. RAD uses short development cycles that allow the client to

review the design and make recommendations for the next cycle. The

process is repeated until all functionality has been developed.

Time Boxing

Time boxing is the process of putting off features to future application

versions in order to complete the current version in as short amount of time

as possible. Time boxing is used to help the application development process

move along when there is a blockage.

Team Members

Successful implementation of RAD requires a small team of highly skilled,

motivated, and versatile members. The team should consist of no more than

six members including the client. The development process requires a high

level of communication between the group members who collaborate often in

workshop sessions. Team members should ideally have experience in Rapid

Application Development and should have experience with the Computer

Aided Software Engineering tools.

 35

Management

The role of management is extremely important to a successful RAD

implementation. Management should be the driving force behind the process

by creating the necessary environment for the successful implementation of

RAD. The RAD methodology requires quick decisions in order to prod the

process along and to overcome the pitfalls that are common in lengthened

development cycles. Management’s role also includes clearing client

misunderstandings and making sure that the project remains on target.

RAD Tools

Technology plays a big role in the successful implementation of the RAD

model. Because of the limited time and resources, the RAD methodology

makes use of technological tools to speed development there are several

tools available in the market today and they can generally be classified as:

1. Data Integration tools:

2. Development Environments:

3. Requirements Gathering Tools:

4. Data Modeling Tools:

5. Code Generation Tools:

4.4 Appropriate RAD Projects

The success of a project greatly depends on the choice of the model. Rapid

Application Development is not appropriate for all projects. Successful RAD

projects have the following characteristics:

1. Small Scope

2. Modular in nature

3. Small and experienced project team

4. Involvement of end user

 36

5. Strong management support

6. Valuable reason to speed up the process

7. Adequate development tools

RAD is not suitable for projects dealing with highly sensitive and complex

operations. For example an application that manages the electric grid or

nuclear power system for a town should not be implemented using RAD

because of the complexity involved cannot be managed in a short high speed

design process. These types of systems require deliberate well thought out

design. Systems that can benefit from RAD include e-commerce web sites,

inventory management applications, and content publishers such as

newspaper websites.

4.5 Benefits of RAD

The RAD methodology presents many benefits when used in the right

situation. Projects implemented using RAD benefit from faster speed and

higher quality because users are involved throughout the process. Users are

able to see tangible proof of the product during the development and can

participate in improving it before the completion of the project. Often times

the process can produce 80% of the solution in only 20% of the time needed

to produce a total whole solution using other models. This is due in part to

Time Boxing which makes it possible to satisfy the most useful business

requirements in a timely manner. Additionally components built using RAD

can be reused in other applications due to their modular nature.

4.6 Disadvantages of RAD

The RAD methodology’s focus on building the systems as fast as possible

makes it difficult to plan for the future. Features are often not easily scalable

because the focus is on doing what is needed now. In order to meet

 37

deadlines some features might not be implemented, therefore users might

end up with a product that is less than expected. In order The RAD

methodology to succeed the design team must be made of highly skilled and

most likely highly paid members which imply higher cost. Any changes in

personnel during the process can compromise the project as additional time

will be needed to find and bring the replacement up to speed. The amount of

time would be negatively affected by the fact that RAD projects are often

loosely documented

4.7 Securing RAD

Integrating security activities in the RAD model requires a great balancing

act. While the intention is to improve the security posture, the potential

increase of the development time and budget that could result from the

activities need be the dealt with carefully. The measures must not

significantly alter the main objectives and benefits of the RAD model which

center on reducing development time, cost, and improve quality.

Proactively tackling software security is often under-budgeted and dismissed

as a luxury. In an attempt to shorten development schedules or decrease

costs, software project managers often reduce the time spent on secure

software practices during requirements analysis and design (McGraw, 2006).

In addition, they often try to compress the testing schedule or reduce the

level of effort. Skimping on software quality is one of the worst decisions an

organization that wants to maximize development speed can make; higher

quality (in the form of lower defect rates) and reduced development time go

hand in hand. Figure 4.1 illustrates the relationship between defect rate and

development time.

 38

Figure 4.1 Percentage of Defects Removed Before Release (Source: McGraw, 2006

The major processes that reduce security defects are secure design,

threat modeling, Static code analysis, and security testing

Secure design: Properly implementing security features, to minimize

and harden the attack surface, and layer multiple security

mechanisms into the design (Wysopal, 208). Secure design begins

with a voluntary effort and acknowledgement of the need for security.

As part of the design process, a determination must be made as to

what aspects of the system require protection and the level of

protection required. The designer must determine the nature of the

data flowing through the system and all the components that interact

with the data as part of a normal process. This determination would

lead to the establishment of what data needs to be secured and what

rights a specific user can have on the data. The objectives of the

design must be ensuring the confidentiality, integrity, and availability

of the data flowing through the system. The design must ensure that

the critical data and resources are concealed from people that do not

have the rights to them; it must also ensure that the data and

 39

resources are trustworthy, and can be accessed by users with the

right privileges whenever they need it.

Secure design must be integrated into the culture of the organization.

This requires a clear mandate from the top plus means to train

members of the team in secure requirement gathering and design

practices must be provided. This training should be extended to

business analysts who help define the application, developers who

design and develop it, testers who look for defects, help desk workers

who talk to the application users and systems administrators who

monitor the application. Developers, testers and program managers

must learn to understand the importance of security issues,

communicate on those issues with others on the project, and take

positive, proactive steps to reduce risks endemic to software

applications. Standard baseline security checklists can be quite useful

in this phase, and might address this point by incorporating rules such

as, “sensitive data including Social Security Numbers must not be

used in ways that might lead to accidental exposure of that data,” or

“SSN must always be encrypted when stored in a database to

safeguard against accidental exposure (Secure By Design: Security in

the Software Development Lifecycle, 2005).

Threat modeling: Performed to determine whether the design

mitigates the risks posed by the software's functionality. Threat

modeling allows the designers to understand the attacker's point of

view. If the threat isn't properly mitigated, the design must be

changed or the risk assumed (Wysopal, 208). Threat modeling

encompasses a review of the design to determine where a potential

 40

threat might exploit the system. A review of all entry points into the

system, assets, threats, and dependencies is performed in order to

gage whether the design successfully mitigates the risks.

Static code analysis: This involves reviewing the code to ensure that

it is structured according to accepted industry standards. In years

past it involved manual review of each line of code by experts in the

programming field. It can now be accomplished using analysis tool

with little or no intervention from a human being. There are many

analysis tools in the market today, commercial and open source, which

are used to analyze code. Tools such as Rational Software Analyzer

and Fortify can analyze code from multiple languages whereas others

such as NDepend (.Net) focus on a particular language or family.

The results of the static analysis are triaged for security flaws that will

truly impact the security of the software. The triaged flaws then

should be entered into the defect-tracking system and treated as

“must-fix” bugs (Wysopal, 208). In order to ensure that the must-fix

bugs are resolved, the project manager can enter them into a tool

such as Numara track-it which is a help desk software that is used to

keep track of projects and tasks. Using Track-it, each bug would be

assigned to a specific developer to resolve within a prescribed amount

of time frame.

Security testing: Security testing is similar to standard software

testing except, instead of verifying that the functionality of the

program works as intended, the testing is attempting to get the

software to perform functions it wasn't designed to do (Wysopal, 208).

 41

To perform security testing, the tester must have an understanding of

the common vulnerabilities and the methods that attacks usually

occur. Security testing should be based on the risks identified during

system analysis with the objective being to push the system to the

limit to see if it will break. Unlike functional testing, it is often difficult

to assess the success of security testing because it is nearly

impossible to account for all situations that might happen.

Despite the time constraints of the RAD model it is possible to

incorporate all four processes mentioned above and still maintain the

required speed. The key is to make sure that security is part of the

design and simple but efficient security steps are performed as

embedded part of each phases of the RAD methodology. The tables

4.1, 4.2, 4.3, and 4.4 highlight the main security activities that must

be incorporated in each phase of RAD in order to improve the security

posture of the application being developed. The development team

should have security discussions throughout the process in order to

make sure that everyone involved from management down to the user

has a solid understanding of the security objectives. The result of

embedding the new security activities into the traditional RAD

methodology is the creation of S-RAD or Secure Rapid Application

Development methodology.

Table 4.1 Requirement Planning Security Activities

Security Activity Description

Conduct the initial risk assessment

This is a qualitative high level assessment in

order to get a better understanding of the

vulnerabilities and treats that you are likely

to encounter.

Information Classification
From the requirements and risk analysis,

make a list of the data that you will need to

 42

transmit, store and assign the level of

sensitivity to each such as high, moderate,

medium, and low.

Determination of any privacy requirements

Legal and industry privacy requirements

should be incorporated in the design in order

to ensure that the project

Develop Security Test Plan
A plan detailing the area to test and how to

test.

Table 4.2 User Design Security Activities

Security Activity Description

Select Security Controls

Judging from the risk assessment, determine

the appropriate controls to mitigate the

risks.

Complete Security Test Plan

Revise the test plan to account for the

security measures that have been put in

place. The plan should include a way to test

the effectiveness of the controls.

Table 4.3 Construction Security Activities

Security Activity Description

Perform functional and security testing

Test each module to make sure that it works

correctly and that the controls that are put in

place mitigate the treats.

Conduct a risk assessment
Evaluate the risks remaining after the test

has been conducted.

Update Security Controls

Update security controls by reinforcing those

that working and changing those that are

not working.

 43

Table 4.4 Cut Over Security Activities

Security Activity Description

Integrate the information application into its

environment

Perform Security tests on the application in

the integrated environment to determine if

the controls remain effective.

Update security controls

Update security controls by reinforcing those

that working and changing those that are

not working.

Review deployment status

Analyze the security posture of the

application to determine which components

can be published in this iteration and which

should be timeboxed for further testing.

It is essential to introduce the security activities during development

because they help the development team to discover defects much earlier

than they would otherwise. As soon as software is deployed and enters the

operational/maintenance phase, it immediately becomes a potential target

for attacks and many organizations only implement security well after the

application has been deployed as a response to some threat or after

vulnerability has been exploited. Incorporating security early, and

maintaining it throughout all the different phases of the SDLC, has been

proven to result in less expensive and more effective security than adding it

to an operational system. Studies show that the relative cost of fixing

defects in production is 30 to 100 times more expensive. Figure 4.2 depicts

the results of a study conducted by IBM Systems Sciences Institute on the

relative cost of fixing defects (Paul, The Need for Secure Software, 2009).

 44

Figure 4.2: Investing in security early can dramatically decrease the cost of fixing defects (Source:

(Paul, The Need for Secure Software, 2009))

The effect of software security breaches and data loss can threaten the

survival of an organization as a result of damaged reputation and

devastating fines. In order to ensure security, organizations must address

software security through the entire lifecycle, from initiation to disposal.

Attempting to resolve security shortcomings in the production environment

with a patch-and-release cycle, as is often the case today, does not address

the root of the problem.

The activities described above should not take too long in order to keep the

process flowing. In order for this to be true, any organization planning to

implement the RAD methodology should have general testing policies in

place prior to engaging in the development process.

 45

4.8 RAD in Action - Case Study

In this section we will examine a fictional case study example involving two

printing companies in order to illustrate how S-RAD should be implemented.

The objective is show how security can be baked into RAD despite the

limited time available to complete the project.

Waka Waka Publishing

Waka Publishing is a company that sells magazines. Over the last year, print

magazine sales have decreased substantially, so they decided to put their

content online and sell subscriptions for content and download. In order to

keep their customer base informed of the new content, they have decided to

institute an email alert system that will send customers alerts according to

subjects and keywords of interest to them. During registration, users would

be able to select which subjects and keywords are of interest to them.

Leangue Publishing Company, which is Waka Waka’s main competitor, has

just launched a similar system and, as a result, is gaining more subscribers

to their site, many of whom are former Waka Waka print subscribers. In an

attempt to salvage the bottom line, Waka Waka CEO has mandated his team

to come up with a solution within two months.

We are going to discuss security activities that Waka Waka publishing would

have to integrate into their development process in order to ensure that

their users’ information is protected. But before talking about the security

activities, we need to determine whether the project above is appropriate for

RAD. A RAD project has the following characteristics:

 Small Scope: Since Waka Waka is already selling content in their site,

the email alert system is only concerned with managing user emails

and their subjects of preference. The goal is to tie the existing user

with the keyword and subjects of interest.

 46

 Modular in nature: The project can be developed as a standalone

application, as it only requires user emails from the existing system.

 Small and experienced project team: Waka Waka’ s team is

experienced in developing applications for the print industry. We will

work under the assumption that they have an experienced team.

 Involvement of end user: Many Waka Waka employees are also

subscribers to their online print site and will be brought in during the

development of the new application.

 Strong management support: The project has been initiated by the

CEO himself and is of great importance for the company’s bottom line.

The CEO has put his top people on this project.

 Valuable reason to speed up the process: The Company is losing

its competitive edge and is experiencing a decrease in revenues.

 Adequate development tools: The development team possesses all

the tools required.

Requirement Planning

In this phase the team performs and initial risk assessment to determine

which threats they could encounter in managing and transmitting user

information. They also rank the sensitivity of information that they would

need to manipulate. General security discussion is held, and a test plan is

discussed.

Potential threats that could be encountered are assigning the wrong keyword

and subjects to a user and exposing user personal information. Assigning the

wrong keyword and subject to the user would result in sending them

information that they are no interested in. Some users might consider this

as junk mail and block the sender. Maintaining the confidentiality of the user

 47

information is critical because some criminals might try to masquerade as

the user in order to obtain sufficient information that would allow them to

penetrate the system and gain access to more valuable information such as

credit card numbers.

In order to develop a clear strategy, the development team institutes a

simple security classification scheme that ranks the severity of threats in a

range from one to five. The scheme determines that one is low, two is

medium, three is moderate, four is high, and five is severe. Using this

classification scheme, the threat of assigning the wrong keyword or

password is rated as moderate because although such an error might cause

an embarrassment for Waka Waka it can be corrected easily. Exposing user

personal information is classified as severe because such an error can have

implications beyond the relationship between the user and Waka Waka as an

organization in the event that the information fall in the wrong hands.

User Design

Security activity in this step include selecting security controls to mitigate

the risks highlighted in the requirement planning phase, and designing a test

plan to verifies that the risks are handled appropriately. Controls that can be

implemented to ensure that users only receive alerts for which they signed

up for start with correct design. Designing a correct relationship between the

user and the content is a key to ensuring that the systems work as intended.

The design team should avoid creating a complex relationship model

because complexity and security often conflict. They should also invest in a

strong authentication system perhaps a two-step authentication in order to

protect against criminals masquerading as legitimate users. In addition to

the traditional user Id and password, the user would be required to supply

another piece of information such as a private pin number in order gain

 48

access to the system. These increases the chances that a hacker would not

be able easily guess the log in information. The testing plan should focus on

penetration testing to see how the system handles attempted intrusion.

Construction

Security activities in this stage revolve around implementing the test plan

and revising the controls as threats are mitigated and new ones are

discovered during construction. Each module must be tested independently

to ensure that the design meets the security objectives. Activities such as

creating test user account and assigning keywords and content and running

tests to make sure that the users receive only the appropriate alerts. Other

activities should involve attempting to break the authentication and system

and masquerading as existing users.

Security testing activities for the Waka Waka application will include the

following steps:

Functional Tests

 Ensure that users can login using the correct credentials

 Ensure that users can sign up for alerts

 Ensure that, if a user has an alert, an email with the correct

message is sent to them

Logical Tests

Authentication

 Ensure that the user cannot sign up for an alert unless they are

logged in.

 Ensure that users cannot create anonymous accounts

 49

Login

 Ensure that user can only log in using their correct credentials

 When a user attempts to login using incorrect information, ensure

that only a generic message is displayed and not one that is too

specific so that you do leak information about existing user

accounts.

Email

 Ensure that sensitive user information such as social security

numbers and credit card numbers are not included in the alert

email.

Regression Test

 Retest previous security issues to make sure that new changes do not

cause them to resurface.

The programmers are primarily responsible for making sure that the security

testing is done because security testing requires a certain level of experience

and knowledge. Once the programmers have completed their part, they

hand over the testing to a selected group of users in order get an unbiased

view of the application.

Cut Over

In this phase, the different components are connected to one another and

tests are performed to make sure that the integration does not create more

vulnerabilities. When new threats are discovered, appropriate controls are

put in place to mitigate the risk. The user authentication system, the system

that determines which user receives which alert, and the component in

charge of sending email to the user are connected and tested as a unit.

 50

This would involve creating several user accounts and assigning alerts to

each. The type of testing will mostly involve releasing a Beta version of the

application to a selected group of users to test over several days.

 51

SUMMARY

Securing an organization requires an understanding of your assets, because

you cannot secure what you don’t know. Many organizations are just now

beginning to understand the need to implement security and often times it

only happens after they have been victimized in one way or another. It is of

great importance to address security and do it within the framework of an

organization’s normal business process in order to prevent catastrophic and

unplanned events from crippling the operation of your organization. Security

is an ongoing process that must be kept up to date and improved upon.

There is no such thing as perfect security. The best you can do is to keeping

yourself informed on the issues and try to mitigate the risks.

Application Security has become an important component of the overall

defense strategy for an organization because hackers have focused a lot of

their attention on the vulnerabilities present in many enterprise software.

Organizations are therefore encouraged to build a strong defense

mechanism to ensure that their software does not become the weakest link

in their overall enterprise defense. Many organizations have understood the

need to integrate security earlier in their process, but there is still a lot of

work to do. Defects in the software can become very costly for organizations

if there is no framework in place to respond to the incident appropriately. It

is commonly believed that the earlier a defect is found, the cheaper it is to

fix it. As we saw earlier in Figure 4.2 on page 44, the cost of fixing the

defect rises substantially as you move along the phases of development. For

example, a defect found during the design phase will cost 15 times less that

if it were found later on during the testing phase.

Rapid Application Development can be an effective methodology for building

applications if appropriate security measures are embedded in the process.

 52

Securing the RAD process does not necessarily require an investment in

expensive tools or technology but rather in being conscious about the

vulnerabilities and to address them effectively by embedding appropriate

control where needed. RAD is only beneficial when implemented correctly.

Incorrect implementation can result in the method becoming more time

consuming than other approaches and difficult to secure.

 53

Works Cited
History of software development. (1997). Retrieved from Bizymoms:

http://www.bizymoms.com/computers-and-technology/software-development.html

cross-site scripting. (2004, 08 31). Retrieved from WhatIs.com:

http://searchsoftwarequality.techtarget.com/definition/cross-site-scripting

Cross-site scripting. (2004, 08 31). Retrieved from WhatIs.com:

http://searchsoftwarequality.techtarget.com/definition/cross-site-scripting

Web Security Glossary. (2004, 02 23). Retrieved from http://www.webappsec.org/projects/glossary/

(2005). Secure By Design: Security in the Software Development Lifecycle. Arctec Group.

What is SQL Injection. (2008). Retrieved from http://www.cgisecurity.com/questions/sql.shtml

Top Cyber Security Risks . (2009, 09). Retrieved from Sans: http://www.sans.org/top-cyber-security-

risks/trends.php

(2010). ExecutiveBrief Software Development Trends Survey Indicates Promising Business Environment

for 2010. ExecutiveBrief.

Software development. (2010, October 28). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Software_development

Software testing. (2010, November). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Software_testing

Software testing. (2010, November). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Software_testing

Top 10 information security threats for 2010. (2010, January 14). Retrieved from Help Net Security:

http://www.net-security.org/secworld.php?id=8709

What is rapid application development. (2010). Retrieved from Whatis:

http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci214246,00.html

Alberto Sillitti, X. W. (2010). Agile Processes in Software Engineering and Extreme Programming. Berlin:

Spring-Verlag Berlin Heidelberg 2010.

Allen, J. (2007). Why is Security a Software Issue? . EDPACS, Volume 36, Issue 1 July 2007.

Auger, R. (2010, 06). Buffer Overflow . Retrieved from

http://projects.webappsec.org/w/page/13246916/Buffer-Overflow

Bezroukov, D. N. (2009, August 12). Software Life Cycle Models. Retrieved from softpanorama:

http://www.softpanorama.org/SE/software_life_cycle_models.shtml

 54

Eric Knorr, G. G. (2010, 07 19). What cloud computing really means. InfoWorld.

Greenberg, A. (2008). A Tax On Buggy Software. Forbes.

J.D. Meier, A. M. (2003). Threats and Countermeasures. In J. Meier, Improving Web Application Security.

Microsoft Corporation.

Kay, R. (2003). QuickStudy: Buffer Overflow. Computerworld.

Longstreet, D. (2006). History of Software Productivity. Retrieved from Softwaremetric:

http://www.softwaremetrics.com/Articles/history.htm

McGraw, G. (2006). Software Security: Building Security. Boston, MA : Addison-Wesley.

Namestnikov, Y. (2010, August). Information Security Threats in the Second Quarter of 2010. Retrieved

from Securelist.com.

Osterweil, L. J. (2007, March). A Future for Software Engineering.

Paul, M. (2008). Software assurance: embedding security into the software development

lifecycle.(SOFTWARE WORLD INTELLIGENCE). Software World.

Paul, M. (2009). The Need for Secure Software. (ISC)².

Purcell, J. (2007). Defining and Understanding Security in the Software Development Life Cycle. The SANS

Institute.

Ravindran, C. (2009, January 9). Rapid Application Development Model (RAD). Retrieved from Ezine

Articles: http://ezinearticles.com/?Rapid-Application-Development-Model-(RAD)&id=412312

Richard Kissel, K. S. (2008). Security Considerations in the System Development Life Cycle. National

Institute of Standards and technology.

Thibodeau, P. (2002, June 25). Buggy software costs users, vendors nearly $60B annually.

Computerworld, p. 2002 .

Wysopal, C. (208). Building security into your software-development lifecycle. SC Magazine.

