
 
 

 

 

 

 

 

 

 

 

 

 

 

Computer Architecture  

Using a Thorough, Concise, 

Step-by-Step Approach: 

A Course for Newcomers to the  

Information Security Field 
 
 
 

By 

 

Jayme M. Speva 

Lewis University 

 

September 4, 2006 

 

 

 
 

 



 2 

 

 

                                  

 

 

 

 

 

 

 

(This page is intentionally blank)



 3 

 

Table of Contents: 

 

Introduction         4 

Chapter 1  History of Computers        5 

Chapter 2  Data Representation and Numbering Systems  20 

Chapter 3 Computer Hardware      32 

Chapter 4   Operating System Concepts     41 

Chapter 5  Digital Electronics       49           

Chapter 6  Disk Operating System     55 

Chapter 7  Linux        63 

Chapter 8  Security Topics        72 

Chapter 9  Conclusion       77 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

 

Introduction 

 

The Master of Science in Information Security (MSInfoSec) at Lewis University 
is a cooperative program developed between the Management Information Systems 
Department and the Mathematics and Computer Science Department. The MSInfoSec 
program consists of two foundation courses, six core courses, a capstone experience, two 
one-hour seminars, and four remaining courses in one of two concentrations: the 
managerial concentration and the technical concentration.  

The nature of the MSInfoSec program appeals to individuals with diverse 
educational backgrounds and work experiences.  Likewise, it is a diverse subject that 
draws from many different disciplines or skill sets, such as investigations, programming, 
networking, managerial, and technical backgrounds. The foundation courses lay the 
groundwork for future study in the major by presenting theories of computer hardware 
and software operations. The purpose of this paper is to provide a textbook for the 
foundation course Computer Organization (68-500).  The problem with the current 
choices of text is that they are either too general of an introduction to data processing, or 
too technical. In fact, to achieve the goal of this foundation course, an instructor could 
easily use multiple books to disseminate the required skill set.  This work provides a 
single text which the instructor may use to present all the concepts that are relevant to an 
understanding of information security. 

The text that is currently used is William Stallings Computer Organization and 

Architecture. Although it is an excellent text for someone with a computer or electronics 
background, it is not a beginner’s text, designed for a person with no computer 
background or prior work experience. Therefore, the goal of this paper is to fill the void 
and bridge the gap somewhere between an introductory to advanced technical text. This 
text is organized in a manner that a person with no prior computer experience can easily 
understand. Topics are organized using a high-altitude overview to convey fundamental 
concepts, before each topic is discussed in depth. The topics are also organized so that 
they build upon one another for a better understanding. This paper’s goal is to provide 
every student in the MSInfoSec program with a required skill set that will ensure success 
in the program, and a foundation upon which the remaining courses in the major can 
build.     

 

 

 

 

 

 



 5 

 

 

Chapter 1: History of Computers 

Man’s fascination has always driven people to look for ways to invent the better 
mousetrap.  As far as computers are concerned, most introduction to data processing texts 
include such innovations as the abacus, Pascal's calculating machine (1642), and Charles 
Babbage's Difference and Analytical Engines (1822) as some of the most important 
developments in history. However, there have been many innovations over hundreds of 
years which have contributed to the development of calculating and thinking machines. 
In the history of the world, there are few other inventions that have had as great an impact 
as the computer. If you compare the pace of computer innovation with any other field you 
find that the pace of innovation and improvement in computing surpasses most other 
fields. It is truly amazing that a one-thousand dollar server that can now sit on a desk has 
the same computing power as a massive mainframe that cost a million dollars 30 years 
ago. If the automotive industry had made the same strides in price performance as the 
computer, cars would only cost a few dollars. The goal of this chapter is to highlight and 
explore the major computer inventions and developments during the past 100 years. It 
will conclude with a summary of the major events in the history of computer security 
during the past 25 years. 

Most new technology has been introduced to address a major historical event or 
problem. For example, the 1890 Government census required a much quicker means of 
counting and tabulating, and meeting this need ushered in the computer revolution. In 
1790, it took the United States Census Bureau over eight months to complete the first 
census. By 1860, the population increased almost tenfold since 1790, from 3.8 million to 
31.8 million. [1] In 1887, the Census Bureau completed the eleventh census seven years 
after it began. The processes used to manually tabulate the data took so long as the 
population increased that by the time the data was collected and tallied it was outdated 
already.  The Census Bureau needed some form of new technology to tabulate census 
data in a more timely fashion.   

The Census Bureau's solution was to have a competition to find a new method to 
tabulate the census. A man by the name of Herman Hollerith entered and won this 
competition. With his victory, not only did Hollerith make it possible to complete the 
census in a reasonable time frame, but the methods that he invented became the 
foundation of data processing today. Herman Hollerith is now known as the father of 
information processing. Hollerith’s contributions to the computer age were numerous. 
Even though he did not invent the computer, his ideas were revolutionary and his 
influence is still seen today in modern machines.  

In 1882, Hollerith was on the staff of Mechanical Engineering at MIT. He was 
inspired by the punch card system that railroad conductors used on trains. In this system 
conductors would punch holes into passenger tickets to identify the passenger status. 
Likewise, Hollerith’s prototype consisted of a paper card that used combinations of round 
punched holes to record census statistical data. This invention was the first known 
advancement in storage media. This tabulating card was modeled around 1887 US paper 



 6 

currency as shown in Figure 1. Following the tabulating card, Hollerith also invented a 
series of mechanized machines that could read and sense the presence or absence of holes 
in the punched cards [2]. This was made possible by a small wire that passed through the 
holes into a cup of mercury beneath the card completing an electrical circuit. This device 
triggered mechanical counters and sorter bins that were able to tabulate the appropriate 
data.  

      

Figure 1. 1890 Census punch card [3] 

 

                       

Figure 2. The 1890 Hollerith tabulator & sorter box [4] 

  The Hollerith 1890 Tabulator and Sorter Box was an electrical tabulating machine 
with a large number of clock-like counters that accumulated the results. By means of 
switches, operators could instruct the machine to examine each card for certain 
characteristics, such as profession, marital status, number of children, etc. Hollerith’s 
apparatus for compiling statistics eventually evolved into a complete system of machines. 
This machine greatly automated the 1890 census but it was a pre-programmed machine, 
meaning it was hardwired and could only be used for census data and nothing else. 
Furthermore, the machine could only count.  

During his technological reign, Hollerith not only refined and improved his 
original 1890 machine, but he built a company around it. In 1896, Hollerith founded the 
Tabulating Machine Company [5]. During this time, he invented many other models that 



 7 

automated his processes more, including a keypunch machine to punch the holes in the 
cards that operated from a keyboard. These included automatic card- feeding 
mechanisms, sorters, and tabulators that could do addition and not just count.  In 1906, he 
invented the Type I Tabulator. This machine took the first steps toward programming 
concepts. It introduced a wiring panel that could program the machine, allowing one 
machine to do different jobs, as shown in Figure 3. This was a major advancement over 
the 1890 machine that could only be used for the census. Herman Hollerith’s work laid 
the foundation of the modern information processing industry.  

 

 

Figure 3. Hardwired plug board [5] 

In 1911, Hollerith’s Tabulating Machine Company merged with two other 
companies, the Computing Scale Corporation and the International Time Recording 
Company. The Latter was renamed to Computer Tabulating Recording Company (CTR). 
CTR manufactured many products including employee time keeping systems, clocks, 
weighing scales, meat slicers, and punch card equipment. As the business evolved, the 
company focused mainly on punch cards and punch card equipment. In 1924, CTR 
changed its name to International Business Machines Corporation, otherwise known as 
IBM [6]. 

At the onset of it’s founding, IBM took “Hollerith machines” to the next level. 
The punch card era was a large growth period because many companies were racing to 
capitalize on this new frontier. In the early 1900’s Hollerith cards used round holes that 
supported 45 columns, where each column represented a single character or data value. In 
1924, Remington Rand Corporation invented a technique to double the capacity of the 
card but they never capitalized on this. In 1929, IBM perfected the rectangular hole and 
standardized the 80 column card. Many other formats appeared sporadically but the 80 
column format remained the standard for a whole century. 

The IBM punch card was in the center of data processing. There was a whole 
suite of machines used to perform different tasks: Tabulators, Sorters, Key Punches, 
Calculators, Interpreters, Reproducers, Collators, and Interpreters. These early machines 
where big, slow mechanical devices consisting mostly of motors, gears, and relays. As 



 8 

time progressed they improved and became faster with more functionality. Many of these 
vintage machines were outdated but were used into the 1980s and some even until the 
year 2000. 

In 1939, Dr. Jan Atanasoff, a physics professor with graduate student Clifford 
Berry, designed and built the first digital computer, the Atanasoff-Berry-Computer 
(ABC). This invention started the transition into electronic digital computers. Atanasoff 
received a research grant of $650 to build a prototype of a computer he had designed for 
solving linear equations [7]. The ABC computer was approximately the size of a large 
desk, and used approximately 270 vacuum tubes. This digital approach was a significant 
technical advancement over the mechanical, electromechanical, or analog based 
machines of this time. This prototype had many limitations; it was slow, not 
programmable, and could not do general purpose computing. Its only purpose was to 
calculate linear equations. Another noticeable design characteristic of the early computers 
is that they were an enclosed system, meaning the main processor did all the work. It not 
only did calculation but it interfaced and controlled everything else on the computer. This 
simply meant that a processor that was very fast was slowed down waiting on much 
slower input output I/O devices. This limitation was improved upon in later machines. 

During World War II British scientist Alan Turing designed the Colossus 
computer, a programmable electronic digital computer that was used to decrypt encoded 
German messages. The Colossus was used as early as February 1944, and nine improved 
versions of the machine were made over time. Due to the war efforts this computer’s 
existence was kept secret until the 1970s. At this time in history, WWII was the catalyst 
that drove the growth in the computer industry. From breaking encryption codes to 
calculating ballistic trajectory tables faster, these needs called for quicker ways to 
perform mathematical calculation. 

In 1945, Dr. John von Nuemann wrote a paper describing the stored program 
concept. His breakthrough idea was that memory holds both data and stored programs. 
This stored-program concept was so completely revolutionary to computer architecture 
that every computer made from this point on should be called a “von Neumann machine”. 
His idea was one of self-replicating, eliminating the lengthy job set-up process. The 
stored program model simply meant that to run a payroll process you load a payroll 
program into memory and execute the instructions from memory. The computer 
essentially replicated itself into a payroll machine. By loading a different program, the 
machine would again replicate itself to that particular task. In 1946, von Neumann and 
his colleagues began designing a new stored program computer known as the IAS 
computer at Princeton Institute for Advanced Studies. The IAS was completed in 1952 
and was the prototype for all modern computers.  The von Nuemann IAS computer had 
twenty-one hardware machine instructions. Using this machine’s instructions a 
programmer could write a program that the hardware could understand and execute. This 
machine language code was very primitive, but at the time it was light-years ahead of 
hardwiring panel boards.  

On December 22 in 1947, William Shockley, John Bardeen, and Walter Brattain 
invented the transistor at Bell Labs. The transistor started the second generation of 
computer architecture, as it replaced the power hungry vacuum tubes found in earlier 
models. Transistors mounted on printed circuit boards were much smaller in size, 



 9 

demanded less power, and increased reliability. Second generation computers where still 
expensive due to design costs and were primarily used by universities, large corporations, 
and government installations. Few could afford to purchase these expensive machines, so 
most were leased from the manufacture.  Second generation computers were prevalent in 
the 1950’s into the 1960’s. 

In the northeast, the ENIAC (Electronic Numerical Integrator And Computer) was 
conceived and designed by Dr. John William Mauchly and J. Presper Eckert of the 
University of Pennsylvania. It was completed in1946 at a cost of $486,000. The ENIAC 
was one of the first large scale, general purpose, electronic, digital computers we know 
today. Furthermore it was the first machine to use binary math. While earlier computers 
had been built with some of these properties, the ENAIC was capable of being 
reprogrammed to solve a full range of computing problems.  ENIAC was also originally 
designed to calculate ballistic equations for the military, and was used in the design of the 
hydrogen bomb. The ENIAC was huge, measuring over 100 feet long, it encompassed a 
room 30 feet by 50 feet, and weighed 30 tons. It used 17,468 vacuum tubes, 7,200 crystal 
diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors, approximately 5 million solder 
joints [8]. Programming the ENIAC consisted of physically hardwiring into plug boards 
using jumper wires. The first time the ENAIC was powered on, lights dimmed in an 
entire section of Philadelphia.  

 

Figure 4. ENAIC [9] 

After completing the ENIAC, Dr. John William Mauchly and J. Presper Eckert 
moved out of the university circle and started a corporation called the Eckert- Mauchly 
Computer Corporation. In 1950, the Remington Rand Corporation purchased this 
company. Remington Rand, with the help of these two men, launched the first 
commercially available digital computer the UNIVAC I (Universal Automatic 
Computer). The first UNIVAC installation was for the U.S. Government Census Bureau 



 10 

in 1951. The first commercial customer to purchase a UNIVAC was the Prudential 
Insurance Company. In 1952, the UNIVAC I became famous in successfully predicting 
that Dwight D. Eisenhower would win the 1952 presidential election. It was the first 
mass-produced computer, with a total of 46 systems built and delivered at a cost of 
approximately one million dollars. Comparable in size to the ENIAC, this machine was 
25 feet by 50 feet in length, contained 5,600 tubes, 18,000 crystal diodes, and 300 relays. 
It had an internal storage capacity of 12,000 characters [10]. 

The major improvement in the UNIVAC computer was that it performed general 
purpose computing with large amounts of input and output. It utilized magnetic tape for 
input devices and typewriters for output, and was the first computer to use the concepts of 
buffer memory. In Figure 5, one can notice that the UNIVAC was an open system, 
instead of being closed like earlier computers. The main processor was in one frame and 
the I/O devices (peripherals) were now in other frames spread out in the room. By using 
buffer memory concepts, I/O devices buffer their requests letting them move bigger 
pieces of data between an I/O device and the main processor. This greatly freed up the 
processor to perform calculation, instead of it waiting on slow I/O devices. For this 
reason, this was a vast improvement in the system throughput or amount of work it could 
perform.    

 

Figure 5. UNIVAC I system [11] 

Thanks to Hollerith, the ABC Computer, ENAIC, and UNVAC I, truly 
remarkable and groundbreaking concepts such as the vacuum tube, the computer 
revolution was off and running. This foundation was equally significant to the 
development of the computer as Neal Armstrong’s first steps on the moon were to the 
space program. Although these early designs and concepts were refined over many years, 
it is important to note that many of these early engineering concepts and ideas are still in 
use today.   



 11 

It is important to step back and take a look at the complete picture to understand 
from a historical perspective, the incredible fury of activity taking place at this time. 
Through the new developments, there were many startup companies competing against 
one another to capture this incredible new market. It was the computer architecture gold 
rush, and everyone had gold fever. Most of these early companies have long come and 
gone.  Punch card machines were the center of modern data processing at this time 
because they were faster than manual methods. While advanced for their age, they had 
many deficiencies such as requiring set-up time. The card machines and early computers 
were programmed via “hardwiring” patch panels, and job scheduling was done on a daily 
or weekly basis. If Friday was payroll day, the computer operators would wire up the 
machines to perform payroll. They would run the payroll jobs to print out checks and 
then would power off the machine to set-up the next series of jobs. Even with the 
implementation of the first generation computers, many of these card processes and set-
up steps were required. By the end of WWII, IBM was the world-leading punch-card 
company. Even though many of these early computers were more like sophisticated 
electronic business calculators, they were ten times faster than punch card processing. 
Specifically, this speed improvement was forcing a drastic shift in technology. 

In 1953, the first widely used mass-produced computer system, the IBM model 
650, was introduced. Originally, IBM planned to produce 50 systems, but the 650 was so 
successful that IBM eventually manufactured more than 2,000 machines. The first 
shipments were in 1954 and IBM ended production in 1962.  The 650 performed 78,000 
additions or subtractions per minute 5,000 multiplications per minute 3,700 divisions per 
minute, and 138,000 logical decisions per minute [12].  IBM was a tremendous 
powerhouse at this time, and they dominated this market into the next decade. IBM 
marketed many machines in the 1950’s, all first generation vacuum tube machines, called 
the 6xx and 7xx series products.  

 In the late 1950’s and early 1960’s, the transistor began to change influence 
change in the computer world. The second-generation transistorized machines appeared. 
In 1959, IBM shipped the first transistorized mainframe, the 7090, and a smaller version, 
the 1401. These machines used ferrite magnetic core memory; they had 4, 8, or 16 K 
memory capacity, which could store 16,000 characters of information. IBM shipped 
12,000 7090 machines, making it the most successful machine in history at the time. 
These first transistorized computers were more or less clones of their vacuum tube 
counter parts. In 1960, the IBM model 650 was replaced by IBM transistorized version 
1620.  

 In 1959, Jack Kilby of Texas Instruments invented the integrated circuit, which 
had two transistorized devices on it. This invention laid the foundation for high-speed, 
large capacity memory computers. The integrated circuit sparked yet another era of 
explosive growth with third generation computers.  Simultaneously occurring in the 
1960s, explosive programming improvements were being devised, and many new 
programming languages were in development. Other developments such as, Digital 
Equipment Corporation’s launch of the first “mini-computer” the PDP1 a smaller less 
expensive version of a mainframe, also had great impact. In 1961, Burroughs announces 
the B5000, the first dual processor and virtual memory computer in incorporating 
memory stack technology. In 1962, the Sperry Rand UNIVAC 1107 was the first to use 



 12 

general purpose register concepts.  On a side note, it is interesting to see the historical 
design patterns repeat themselves. Original first generation, vacuum tube computers 
evolved into smaller, faster second generation transistorized machines. Now second 
generation transistorized machines are made smaller, faster, and more reliable using third 
generation, integrated circuits, while incorporating new design concepts.     

 In the past, computers were not only big and expensive, but they were difficult to 
use. Even while utilizing the von Neumann model of stored-program concepts, machines 
of this day were programmed in machine language, not a human language. Another issue 
with machine language is that it was solely machine dependent. If one wrote software to 
run on a UNIVAC, it was not compatible with an IBM or vise-versa. In fact software 
written for one IBM model was not compatible with a different IBM model. Therefore a 
reoccurring theme in the computer industry, one that is still true today, is the paradigm of 
“first”, “fastest”, or “cheapest”. This is a condition that if one is trying to market a 
product to someone one has to meet two of these three criteria to make the sale. Be the 
“first” to market with the product, have the “fastest” product, or be the “cheapest”. 
Nowhere in this equation does being the “best” factor in to making a sale. IBM gained 
massive dominance in the computer market, simply because they were the “first” in the 
market. This fact gave IBM a tactical time advantage over competitors, because by the 
time the competition could develop a similar product, IBM’s next announcement would 
be out. Once customers made massive investments to write software to run on IBM, they 
were locked into IBM products. While they could have switched to another vendor, it 
would cost a company too much time and money to rewrite thousands of programs they 
have already developed to run on IBM’s platform.  

 With these early computer systems, application development was an extremely 
tedious task. Programmers had to speak to the computer hardware in a language that the 
hardware could understand, called machine language. Machine language is the set of 
hardware instructions that the processor hardware is designed to execute, such as, ADD, 
SUBTRACT, MULTIPY, DIVIDE, MOVE, LOAD, JUMP, etc [13].  As a programmer, 
one had to keep track of all input and output functions, contents of memory locations, and 
general purpose registers. Registers acted as scratch pads where one could store a number 
into a register, then ADD that register to a different register to get a total. Machine 
language used direct addressing methods, if the main program branched to another 
location, as a programmer, one had to keep track of all these locations in order to return 
back to the main program. Programmers had to have extensive knowledge of the 
hardware in order to write simple software applications. In fact, just running jobs on early 
computers was difficult. The IBM 1401 required that one load a monitor deck of cards. 
Operators would put the deck of cards in the card reader and then press the load button on 
the main console. The 1401 would load the monitor program into main storage and this 
program would give the machine “smarts”. Once it loaded, it would come to a wait code 
that the operator would read out from console lights in binary, this was like booting up a 
modern PC. Once the monitor program loaded, the monitor would know where to start 
executing instructions. The operator would then load the program from a card deck into 
memory and hit the execute button to run the program.  

 Until the development of the operating system, writing programs and executing 
jobs on early computer systems was difficult. An operating system is a software 



 13 

application that manages hardware resources and is an interface between the hardware 
and the computer operator. The operating system humanizes the computer, making it 
much easier for operators to instruct the system to perform a given task. Compiler 
developments led to the birth of many high-level programming languages, making it 
easier to develop software applications. By the 1960s, about 200 different programming 
languages were developed. The major ones were: FORTRAN (1957), COBOL (1960), 
and BASIC (1965).     

In 1964, a major pivotal point in development emerges the IBM System 360 
family of computers. IBM named it the 360 because of the 360 degrees in a circle, a 
circle that would figuratively encircle the globe. Unlike products of the past, designed to 
perform a specific task, and lacking compatibility with other systems, the System 360 
family from the smallest processor to the largest, all ran the same hardware instruction 
set, and utilized forty common peripherals devices. This was a major deviation from the 
past. Now a company could start out with one model 360 and develop applications. If the 
company outgrew this model they simply could roll in a new faster processing unit, 
connect all their existing IO peripherals, without the time and expense of having to 
rewrite application programs. The system 360 was a tremendous gamble for IBM, it was 
the most expensive computer project in history at this time. IBM invested $5 billion 
dollars in this project, and it was a huge product deviation from their other money 
generating products. In the 1960’s IBM’s research and development budget was larger 
than the Governments. They hired 60,000 new employees, built new plants to 
manufacture integrated circuits. Tom Watson Jr. and Tom Watson Sr. the founding 
family members of IBM argued intensely over this gamble [14]. If the system 360 failed 
IBM would have gone bankrupt. Tom Watson Jr. saw the future in electronic 
transistorized computers and went against his father’s wishes in this undertaking. $5 
billion in 1964 dollars is equal to about $30 billion in 2005 dollars. The only project that 
was larger than System 360 during this time was the Apollo Space program.  

Furthermore, the system 360 introduced microcode technology, a low level layer 
of computer code that interfaces with the computer hardware. This microcode layer exists 
between the hardware and the operating system. This innovation achieves a common 
denominator between hardware and application software. For example, if the smallest 
processor in the 360 used blue hardware, it would come with blue microcode. This layer 
of blue microcode would be written so the blue hardware would understand it. If the 
application program that resides above this microcode layer executes an instruction, the 
blue microcode would convert this instruction so the blue hardware could understand and 
execute it. If we install a faster processor, that uses green hardware, it would come with 
green microcode. The same application instruction executes, and the green microcode 
would convert this instruction so the green hardware could understand and execute it. 
This microcode layer makes the application independent of model, making hardware 
transparent to the user applications. The same application could now run on any model in 
the system 360 family, without any conversion time or expense. Another major 
breakthrough was the concept of emulation. By now IBM had a large customer base, 
many customers had large capital investments in applications running on old hardware. It 
was a difficult sell to move customers into the newer 360, because this required rewriting 
all application software. Emulation software ran on the newer 360 processors and tricked 
the hardware to think it was something it wasn't, a different machine. This enabled a 1401 



 14 

customer to install a System 360 and through 1401 emulation software run all their old 
1401 applications this new platform with no software conversion. This gave IBM an even 
stronger foothold in the market place.  

Other system 360 hardware developments were: twos complement arithmetic, 
floating point architecture, the 8-bit byte, 32-bit words, segmented and paged memory, 
and 16 general purpose registers [15]. Performance gains where achieved by using “smart 
peripherals”. In early computers the processor not only had to perform calculation, but 
also controlled to the input output devices. As time evolved the IO devices became 
smarter by utilizing control units.   Control units were standalone specialized processors 
that controlled the I/O devices. This offloaded work from the main processor to the 
control units thus enabling the main processor to devote all its time to calculation. Also 
control units utilized buffering to increase the size of data exchanged between main 
processor and control unit. Instead of only sending one character of data at a time to a 
device, now we could exchange pages of data at a time. This was a vast performance 
improvement. Watson’s gamble paid off big-time, even with numerous development 
problems, once the kinks were ironed out, IBM could not fill 360 orders fast enough. The 
system 360 and following system 370 completely redefined modern business computing.  
Customers embraced this technology, and for the next twenty years IBM totally 
dominated mainframe industry.    

 

Figure 6. IBM system 360 [16] 

In 1970, the fourth generation of computer emerged, built with computer chips 
that used large scale integration (LSI) technology.  Just eleven years earlier, integrated 
circuits had 2 transistors on them. In 1970, they had 1000, increasing to 64,000 in 1980, 
then to 16 million in 1992. When IBM’s system 360 replacement was announced, the 
system 370, it utilized LSI circuits and introduced 32-bit technology. Microelectronic 
advancements resulted in massive performance gains like lower energy consumption, 
reduced heat generation, faster speeds, and much smaller in size. In 1971, Intel’s Dr Ted 
Hoff invented the first microprocessor the 4004 and it changed the landscape of the 
industry. The 1970’s, started a development explosion, Intel’s microprocessor made the 



 15 

illusion of a computer on a chip, now an attainable possibility. From the microprocessor 
era emerged a new radical group of devoted computer hobbyists: Wozniak, Jobs, Allen, 
and Gates. These pioneers capitalized on the developments in microelectronics, operating 
systems, and programming to create and propel the industry into an era of unprecedented 
growth.    

 On a completely different technological front in 1975, the first home-based 
computer emerged the Altair. Sold in electronic magazines for $397 dollars with features 
like no screen, no keyboard and the size of a modern microwave it was a hobbyist’s 
dream. Twenty-one-year-old Bill Gates wrote a BASIC compiler to run on Intel’s 
microprocessor. Wozniak and Jobs had their version of BASIC running on a Motorola 
microprocessor and the single-circuit board Apple 1 was born featuring a keyboard and 
hooked to a TV screen [17] In 1976, the Apple 2 came out, with a new developed 
program called a spreadsheet named VisiCalc. This gave the home computer legitimacy 
to do real business calculations, not just a toy or game console. Apple won the hearts of 
the school systems and the home market.  Apple was prospering, and new microcomputer 
companies sprang starting another fury of gold fever. This was a very exciting time in the 
industry. These microprocessor computers along with Digital Equipment Corporation 
DEC mini-computers started a computer revolution that hit so fast and forcefully that it 
unseated the mainframe from its dominant hold.       

In the late 1970’s, the mainframe computer growth started to flat line off its 
double-digit, growth of early years. This emerging small computer phenomenon caused 
IBM to look at this smaller computer market, and they realized they were missing out on 
this new opportunity. What happened next is one of the greatest business success stories 
and one of the greatest business failures to ever occur. IBM developed the Personal 
Computer (PC) in 1981. They approached the PC in a totally different light, abandoning 
conventional development cycles. Instead of building every component for the product 
themselves, they shopped around and assembled the computer with readily available 
parts: Tandem diskette drives, Zenith power supplies, Epson printers, and an Intel 16-bit 
8088 microprocessor. This allowed IBM to complete the product in nine months.  

The part about how IBM chose and acquired the operating system has a few 
different versions. One story is that IBM was in contact with Bill Gates startup company 
Microsoft, because they wanted his BASIC, FORTRAN, and COBOL compliers [18]. 
After failing to acquire CP/M, the most popular operating system at the time, they went 
back to Gates and had him come up with one. Another version is that Gate’s mother over 
heard an IBM executive talk about the PC in development. Gates and Allen approached 
IBM with a proposal that they would license their Operating System to IBM. IBM liked 
this idea, so Gates and Allen shifted to panic mode to come up with an operating system 
because they did not have one at this time. They purchased Quick and Dirty Operating 
System QDOS from a Seattle company for $50,000. They improved it and called it MS-
DOS. The rest of the story is history. IBM’s oversight gave Microsoft billions in revenue 
that IBM could have enjoyed. Now, almost 25 years later, Microsoft is IBM biggest 
competitor.   

The failure on IBM’s part was in licensing the software from Microsoft. This gave 
Microsoft the right to market the software it to anyone, and they did. The IBM Personal 
Computer was so successful that it was named the man of the year in 1982 by Time 



 16 

Magazine. This caused the clone market to open up and compete against IBM using the 
same operating system MS-DOS that Microsoft was happy to sell to anyone. These PC 
clone companies were much cheaper than the IBM PC, and they sold millions of them. 
This mistake may have been difficult for IBM to avoid. In hindsight, IBM should have 
agreed to an exclusive license agreement for MS-DOS or purchase it outright from 
Microsoft. There are many reasons why this may not have happened. One is simply 
massive oversight IBM was so successful with mainframes they did not look at the PC 
seriously. Government was suing IBM for being a monopoly in the mainframe market 
and this divestiture may have been taken as a way to show the government they competed 
fairly using a competitor’s product. At this time, IBM felt invincible and may have even 
feared the PC cutting into its higher profit mainframe margins. This was the same 
arrogance General Motors exhibited in the 1970’s, when the Japanese started selling 
smaller cars. Both IBM and GM made massive tactical errors, which cost them dearly.  

In the last quarter of the century, gold fever continued to move everyone west, 
finally stopping in California’s Silicon Valley. Intel’s microprocessor started the personal 
computer revolution, causing new technologies to continually play leap frog.  
Microelectronic advancements progressed to very large scale integration (VLSI), into 
ultra large scale integration (ULSI) enabling more circuits to be placed on smaller chips. 
Not only did size of these devices decrease, but the sheer horsepower increased, too. The 
16-bit PC revolution has now progressed into 64-bit processor. Man’s appetite for 
smaller, faster computers simply cannot be suppressed.   

 Much more could be said about the history of the computer to provide a more 
complete picture. It is important to mention just some of the many companies that 
contributed to the development of Computer Architecture like: GE, Remington Rand, 
RCA, NCR, Control Data, Memorex, Burroughs, Univac, Amdahl, Fairchild, Data 
General, Prime, Wang, Four Phase, Sperry, Motorola, Zilog, AMD, Intel, IBM, DEC, and 
Ampex. However, progress great progress has also been made in the areas of networking 
and protocols, and that is where we turn our attention now.   

 In the early days of information security, security was implemented only in the 
physical sense. For example a “secure” computer system was enclosed in a concrete 
building with strong locks and doors. Perhaps military or government locations would 
have armed guards to control personnel entering the center, but that was essentially the 
extent of secure operations. If you had security clearance to the physical system, you 
could run any job. There were no safeguards built into the early hardware or operating 
systems to control access levels or access rights. There have been methods of encryption 
used for top secret data dating back to the early 1900’s., but these methods were crude, 
consisting of ciphers that did nothing more than substitute characters to scramble the 
plaintext message.  

 Needless to say, lot has changed in the last 25 years in regards to information 
security. The catalysts that drove this were (1) improvement in telephone communication 
systems that enabled remote connections, (2) standardized communication protocols that 
enabled different manufactures computers to communicate with one another [19], (3) the 
growth of the personal computer, and (4) the Internet. One of the first users of the early 
computer systems was the government. Each of the four branches of military had early 



 17 

installations of mainframe systems. However, one problem the military encountered was 
that each branch of military selected a different vendor’s computer. This was done as a 
precautionary measure. The military did not want to risk national security by placing all 
its eggs in one basket by using one vendor. They feared that if a vendor went out of 
business or had reliability issues with their system, they did not want this affecting all 
branches of the military, especially during the Cold War. Therefore, by solving one 
problem they created another. At this time, there were no standards in data 
communication protocols, which is a set of rules governing communication within and 
between computing endpoints. 

The birth of the Internet started when the United States Space Program was born. 
In the late 1950s and early 1960s, the United States got caught up in the space race with 
Russia. In response to the fear of Russia launching a nuclear warhead at the United 
States, one of the immediate reactions was the creation of the Advanced Research 
Projects Agency (APRA), within the Department of Defense. ARPA’s mission was to 
apply state-of-the-art technology within the United States for defense. The initial 
emphases of ARPA activities were on space, ballistic missiles and nuclear test 
monitoring. However, communications became a major focus of ARPA activities. ARPA 
started a project called ARPANET; its goal was to link computer systems together 
between different geographical locations. The reasoning behind this was that if one 
location was attacked, the other locations could be used. In 1965, computers in Berkeley 
and MIT were linked over a low speed dial-up telephone line to become the first wide-
area network ever created. After this, advancement continued and in 1971, 23 computers 
were networked together. In October of 1972, ARPANET went public at the First 
International Conference on Computers and Communication, held in Washington DC, 
ARPA scientists demonstrated the system in operation, successfully linking computers 
together from 40 different locations. This stimulated further research in the scientific 
community throughout the western world. Soon, other networks would appear along with 
more innovation. E-mail was also invented in 1972, TCP/IP in 1974 and in 1984 the 
number of hosts topped 1,000 for the first time. 

In 1984, the U.S. military portion of the ARPANET was broken off into a 
separate network, the MILNET. The National Science Foundation (NSF) became 
involved in Internet research in the mid-1980s and basically took over as the governing 
branch of ARPANET.  Likewise, work was progressing to develop the Internet at this 
time. The U.S. Department of Defense decided the network was developed enough for its 
initial purposes, and decided to stop further funding of the core Internet backbone. The 
NSF agreed to provide the backbone for the US Internet service, and provided five 
supercomputers to service traffic. A protocol called TCP/IP was accepted as the standard 
protocol for routing movement of data from place to place. Fiber Optic cable was 
developed and was being used to handle the expansion of growing traffic. IBM entered 
the personal computer market in the early 1980’s and provided credibility and acceptance 
to a “computer in every home theory”. Shortly after, home PC users where introduced to 
e-mail.  

The emphasis on computer security has evolved with these technological 
advancements. In October 1967, a Task Force was organized by the ARPA to study and 
recommend appropriate computer security safeguards that would protect classified 



 18 

information in multi-access, resource-sharing computer systems. The report of the Task 
Force was published by The Rand Corporation in February 1970. It was called Security 
Controls for Computer Systems. This report expanded information security beyond the 
physical level to thinking in terms of securing data, users, and infrastructure. Operating 
systems were also improving in the security realm. The first operating system to address 
security issues was called Multiplexed Information and Computer Service (MULTICS).  
MULTICS was also notable for its early emphasis on security by design, because it was 
the first operating system to be designed as a secure system from the ground up. It also 
incorporated user password protection and authentication into multiple user security 
levels.  

Along with the increased growth in computers, the Internet, and communication 
devices, there is also the same increase in computer crime. Security has never been as 
important as it is today. Criminals will always to go places to seek out their victims. 
Today, that place is the internet. From hacking into computer system to steal personal and 
financial information, to stealing government or corporate secrets the computer security 
professional will become the growth profession of the future.     

 The purpose of this chapter was to give you an appreciation for how the current 
state of the art in computer technology was achieved. Computer Science is a field that 
emphasizes problem solving. The industry has attained its current level through a series 
of missteps ad fixes. There are numerous problems still facing the industry today, 
particularly in terms of the security of systems. Your challenge will be to advance the 
state of the art by applying your talents and creativity to solving these problems.  

References: 

[1]  United States Census. In Wikipedia [Web]. Retrieved September 3, 2006, from 
http://en.wikipedia.org/wiki/United_States_Census 

[2] Herman Hollerith. In Wikipedia [Web]. Retrieved September 3, 2006, from 
http://en.wikipedia.org/wiki/Herman_Hollerith 

[3] Figure 1 Hollerith 1890 Census Tabulator. Retrieved September 3, 2006, Web site: 
http://www.columbia.edu/acis/history/census-tabulator.html 

[4] Figure 2 Hollerith Tabulator & Sorter Box. Retrieved September 6, 2006, from IBM 
Archives > Exhibits > Antique attic, vol. 1 > Artifacts list for vol. 1 > Web site: 
http://www-03.ibm.com/ibm/history/exhibits/attic/attic_071.html 

[5] Figure 3 Hardwired Plug Board. Retrieved September 6, 2006, from IBM Archives > 
Exhibits > Antique attic, vol. 1 > Artifacts list for vol. 1 > Web site: 
 http://www-03.ibm.com/ibm/history/exhibits/attic/attic_054.html  

[6] Art of Compiling Statistics; Apparatus for Compiling Statistics. Retrieved September 
3, 2006, from www.museum.nist.gov Web site: 
http://museum.nist.gov/panels/conveyor/hollerithbio.htm 



 19 

[7] ABC (Atanasoff-Berry Computer) 1940. Retrieved September 4, 2006, from 
www.Computer Museum.il Web site: http://www.computermuseum.li/Testpage/ABC-
Computer-1940.htm 

[8] ENIAC. Retrieved September 4, 2006, from www.wikipedia.com Web site: 
http://en.wikipedia.org/wiki/ENIAC 

[9] Figure 4 ENAIC Photo Timeline of Computer History. Retrieved Sept 6, 2006, from 
The Computer History Museum Web site: 
http://www.computerhistory.org/timeline/?category=cmptr 

[10] UNIVAC I. In Wikipedia [Web]. Retrieved September 4, 2006, from 
http://en.wikipedia.org/wiki/UNIVAC_I 

[11] Figure 5 UNIVAC I System. Photo courtesy of: The Smithsonian 

[12] 650 Feeds & speeds. Retrieved September 4, 2006, from www.IBM.com Web site: 
http://www-03.ibm.com/ibm/history/exhibits/650/650_fs1.html 

[13] Stalling, William (1999). Computer Organization and Architecture. Upper Saddle 
River, New Jersey: Prentice Hall. 

[14] Thomas J. Watson and Peter Petre, (2000). Father, Son & Co.: My Life at IBM and 

Beyond. 

[15] IBM System/360. In Wikipedia [Web]. Retrieved September 1, 2006, from 
http://en.wikipedia.org/wiki/System_360 

[16] Figure 6 IBM System/360 Model 75. Retrieved September 6, 2006, from IBM 
Archives > Exhibits > Antique attic, vol. 1 > Artifacts list for vol. 1 > Web site: 
http://www-03.ibm.com/ibm/history/exhibits/attic/attic_054.html 

 [17] Apple Computer. In Wikipedia [Web]. Retrieved September 4, 2006, from 
http://en.wikipedia.org/wiki/Apple_computer 

[18] Ferguson, Morris, Charles H, Charles R (1993). Computer Wars, How the West Can 

Win In a Post-IBM World. New York, New York: Random House, Inc.  

[19] Communications protocol. In Wikipedia [Web]. Retrieved November 12, 2006, from 
http://en.wikipedia.org/wiki/Communications_protocol 

[20] Computer security. In Wikipedia [Web]. Retrieved Nov 6, 2006, from 
http://en.wikipedia.org/wiki/Computer_security 

 



 20 

Chapter 2: Data Representation 

Throughout history, man has used numerous methods to communicate with 
another, such as smoke signals, sign language, Morse code, and verbal languages.  If two 
people wanted to communicate with one another, they could also use a non-verbal form 
of communication, by tapping once for yes and twice for no. Although this non-verbal 
communication is somewhat strange and different, it could be effectively used. The 
struggle that early computer developers faced was how to get humans to communicate 
effectively with computers. Man and computers speak in two entirely different languages; 
Americans use English as their main language, and base-ten decimal as their numbering 
system. Computers work off the principal of a switch, which has only two states, either 
on or off, such as a simple light switch.  The struggle is how to represent all characters 
and number symbols with two states. Fortunately, the state of on or off is base two, and 
fits in perfectly with the binary numbering system.  

In 1890, when Herman Hollerith invented the punch card, the first obstacle he had 
to overcome was getting the holes in the card to represent certain characters and numbers. 
He did this by using a hole or multiple holes in a column to represent one character of 
data, called the 80 column card. The 80 column card is comprised of 80 columns and 12 
rows. The 12 rows were broken into two different sections called zone and numeric rows. 
The top three rows of the card are the zone rows and the bottom 9 rows are the numeric 
rows as shown in Figure 1. If one wanted to represent a number they would punch one 
hole in the column in the numeric row that corresponds to the number. For example; a 
one hole = number 1, a two hole = number 2, etc. To represent a character punch two 
holes in the same column, a zone punch with a numeric punch. For example; a 12 zone 
with a one hole equals the letter A, a 12 zone with a two hole equals a letter B, and so on. 
If you look close at Figure 2, you see that a 12 zone hole with a numeric hole represents 
letters A to I. An 11 zone hole with a numeric hole represents letter J to R.  The 
remaining letters S to Z, are represented with a 0 zone hole with a numeric hole.  Special 
character symbols were represented by 3 holes in the same column.  

Columns 1 to 80 
                  ________________________________________________ 

                 / 

          /  12 / O 

  Zone rows  11|   O 

          \/  0|    O                    

          /   1|     O 

         /    2|      O 

        /     3|       O 

 Numeric      4|        O 

 Rows         5|         O 

        \     6|          O 

         \    7|           O 

          \   8|            O 

           \  9|             O            

               |__________________________________________________ 

                     

Figure 1. 80 column punch card layout 

                     

 



 21 

 

 

Figure 2. 80 Column punch card [1] 

In mathematics, many notational systems are used to represent numbers. A 
numbering system is defined by the base it uses. The decimal system is the most 
common number system in use today. It uses ten different symbols to represent 
numbers and is therefore called a base-10 system. In computer applications, binary 
(base 2), and hexadecimal (base 16), are the most commonly used numbering systems. 
It is very important to understand binary and hexadecimal in order to gain a deeper 
understanding how computers function at their inter-core.  

Decimal 

In order to understand a different numbering system, it is important to review the 
numbering system we use the most decimal. We use decimal so frequently, that we 
sometimes forget how it fundamentally works. Once one understands the principle of 
decimal, this same principle applies to binary, and hexadecimal.  Decimal utilizes ten 
symbols 0,1,2,3,4,5,6,7,8,9.  The position of a symbol or placement of a symbol denotes 
the value of that symbol in terms of exponential values of the base. That is, the symbol 
placement determines positional value. 

A numbering system that uses positional representation means that the value 
represented by a digit depends on its position in the representation of the number. For 
example, the 6 in 461 represents the value of sixty, while the 6 in 6927 represents six 
thousand. The value represented by a digit in a position representation system is the digits 
own value multiplied by a power of the base. It can be expressed as:   

  dx dx-1 ….. d2 d1 d0 



 22 

where the d’s are digits, the subscript represents the exponential power to raise to the 
base number. Representing the digit di simply means to multiple the radix raised to the ith 
power.  

In decimal, we call the rightmost position the ones (100) place, it also is called the 
least significant digit (LSD).   The next (from the right) position is the tens (101), the next 
the hundreds (102), and so on. We can express the decimal number 7903 as: 

(7 X 103)  + (9 X 102) + (0 X 101) + (3 X 100)  = 

(7 X 1000)  + (9 X 100) + (0 X 10) + (3 X 1)   = 

7000 + 900 + 0 + 3 = 7903 

 Another way to observe this would be to examine how we count.  We start 
counting in the Least Significant Digit (LSD) position d0, so d0 digit placement value is 
expressed as 100. Note that any number raised to the zero power equals one. So d0 
placement value is one, or the one’s field. In decimal ten we count, zero, one, two, 
three, four, five, six, seven, eight, and nine. When you run out of numeric symbols, you 
have to carry over to the next digit position d1. d1 digit placement value is expressed as 
101 or (10X1=10) ten raised to the first power equals ten. So d1 placement value is tens. 
Once again, counting zero to nine, until carrying to the next digit position d2.  Every 
time carrying to the next digit position the digit placement value increases exponentially 
as illustrated in Table 1.  

Table 1. Represents decimal digit placement values 

 

 

 

Example problem 1:  

In the number 357. The Least Significant Digit (LSD) d0 = 7 X 100 = 7 X 1 = 7, The 5 
digit d1 = 5 X 101 = 5 X 10 = 50. The Most Significant Digit (MSD), 3 number d2 = 3 X 
102 = 3 X 100 = 300. The sum of these positional values is 7 + 50 + 300 = 357. 

MSD     LSD  

dx d4 d3 d2 d1 d0 Digit Position 

10x 104 103 102 101 100 Placement Value 

 10,000 1,000 100 10 1 Positional Value 

0 0 0 0 0 0 Symbols 

1 0 0 0 0 0  

2 2 2 2 2 2  

3 3 3 3 3 3  

4 4 4 4 4 4  

5 5 5 5 5 5  

6 6 6 6 6 6  

7 7 7 7 7 7  

8 8 8 8 8 8  

9 9 9 9 9 9  



 23 

Binary 

The binary system works like the decimal system, however, with only two 
symbols which can be used to represent numerical values: 0 and 1 [2]. Similar to decimal, 
the position of a symbol or placement of a symbol denotes the value of that symbol. The 
symbols placement determines positional values. Symbol placement and positional values 
can be seen in Table 2.  

Table 2. Binary placement 

dx d4 d3 d2 d1 d0 Digit position 

2x 24 23 22 21 20 Placement value 

 2x2x2x2 2x2x2 2x2 2x1 2x0  

 16 8 4 2 1 Positional value 

0 0 0 0 0 0 Symbols 

1 1 1 1 1 1  

 

To understand binary simply count, examine Table 3 closely to see what is taking 
place. Start counting at zero (0000), one (0001), two (0010) notice the carry because 
there are no more symbols to use, three (0011), four (0100) carry’s to the next column, 
etc. (Reference Table 3 below) [3]. Binary maybe unusual, but it is the foundation of how 
digital electronics works. Two states can be on of off, light or no light, hole, or no hole, 
and voltage or no voltage. The two states “0” and “1” can be represented a voltage of 0 
volts for zero value, and 5 volts for one value, this is how transistors and switches 
function. 

Table 3. Counting in binary 

 

Decimal Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

10 1010 

11 1011 

12 1100 

13 1101 

14 1110 

15 1111 

 

 



 24 

One nice thing about binary is that it is easy to convert binary to decimal. 
Although binary uses two digits, each column is worth twice the one before it. In the 
binary system, the columns are worth 1, 2, 4, 8, 16, 32, 64, 128, 256, etc. To convert a 
number from binary to decimal, simply write it in expanded notation. For example, the 
binary number 101101 can be rewritten in expanded notation as (1×32) + (0×16) + (1×8) 
+ (1×4) + (0×2) + (1×1). By simplifying this expression, the binary number 101101 is 
equal to the decimal number 45 as illustrated in Table 4. 

Table 4. Converting binary 101101 

32 16 8 4 2 1 Position value 

1 0 1 1 0 1 Binary Number 

32x1 16x0 8x1 4x1 2x0 1 x1  Expression 

32 0 8 4 0 1 Sum 

 
                                 32 + 0 + 8 + 4 + 0 + 1 = 4510 

                                 1011012 = 4510 
Easy way to convert binary to decimal is to simply list the positional values over 

the digits starting with the least significant digit. The positional values in binary are easy 
to remember because they double. Starting with the LSD the positional values are: 
1,2,4,8,16,32,64,128, etc. It is much easier to see in a table format refer to Table 5. 

Table 5. Binary breakdown of 10101010 

128 64 32 16 8 4 2 1 Positional          

Value 

1 0 1 0 1 0 1 0 Binary 

 

Now add the positional values for every column with a 1 bit.  

101010102 =128 + 32 + 8 + 2 = 17010. 

Bits and Bytes 

As a rule, the smallest unit of data in a computer is a bit.  We seen in binary 
notation a bit can be a “0” or a “1”, on or off, etc. Since a single bit can only represent 
two different states, there had to be a method to represent the complete character set of 
the alphabet; special characters, and numbers. To do this a method of grouping a number 
of bits together was devised. In Hollerith’s punch card methodology, he devised his 
standard by using a series of holes in a column to represent numbers and character data. 
Modern computers, they do the exact same thing by grouping a number of bits together. 
In a 16-bit processor configuration we group 8 bits together to form what is called a byte. 
Grouping two bytes together or 16 bits forms a word. The bits of a word are numbered 
from 0 to 15 starting with the rightmost, least significant bit. A longword consists of four 
contiguous bytes, or 32 bits, and a quadword consists of eight contiguous bytes, or 64 
bits. These concepts are illustrated in Figure 3. 

 

 
                        



 25 

Byte 

         7           0 
 

 Word            
                                                                                                                     15         8 7       0  
 

  Long Word 
                                                                               31          24 23         16 15        8 7         0    
                                                                                                                                                             

      Quad Word 
63            56 55          48 47         40 39         32 31         24 23         16 15          8 7           0 
 
                                      Figure 3. Units of Memory 

The above example is true for the 16-bit processors used in the first personal 
computer. Even though the relationship that 8 bits form a byte is always true. The number 
of bits to form a word may not always be the same. The size of a word generally 
corresponds to the size of the processor. In a 32-bit processor, the word length is 
comprised of 32 bits, 16 bits would be called a half word. Likewise, in a 64-bit processor 
a word is 64 bits long.     

Data Sizes and Precision 

Understanding binary is imperative to understanding processor architecture. If 
you examine the fundamental differences is between; 8-bit, 16-bit, 32-bit, or 64-bit 
processor architectures, you first have to understand the numeric values of these word 
lengths.  Refer to Table 6. 

Table 6. Common binary values 

         Size              Binary Value            Decimal Value 

      8 bits 1111 1111                    255 

    16 bits 1111 1111 1111 1111                 65,535 

    32 bits 1111 1111 1111 1111 1111 1111 1111 
1111 

          4,294,967,295 

 

Upon examining the above table, it is apparent that the maximum value that can 
be expressed with 8 bits is decimal 255. Likewise the maximum value expressed in 16 
bits is 65,535 and 4,294,967,295 with 32 bits. This is important for two reasons; first, 
computers use memory locations to store programs and data. The internal processor 
addressing mechanism uses this word length to address these memory locations. 
Therefore an 8-bit processor can only address 256 memory locations, and a 16-bit can 
access 65,536 locations. This illustrates one area of major confusion that appears with 
numbering systems. In decimal, zero is not usually referenced, but in binary, zero is 
always reference, because in terms of memory addressing, location zero is an addressable 
location.  So in converting the binary number 1111 to decimal, we know it equals 
decimal fifteen, but it’s important to keep in mind and in terms of addressable memory 
it’s sixteen locations, 0 to 15.  



 26 

 

In terms of computing performance addressing more memory equates to faster 
processing. Secondly, a character of data is represented with 8 bits, thus a 8 bit processor 
can move one character of data at a time. A 16 bit processor can move two 8 bit 
characters of data simultaneously, and a 32 bit processor moves four characters at one 
time. Larger word size increases performance drastically. 

Representation of Character Data in Memory 

 The fundamental problem is how to group one and zeros together to represent the 
English alphabet, special characters and numbers. The two most common methods are 
ASCII (American Standard Code for Information Interchange) [4], and EBCDIC 
(Extended Binary Coded Decimal Code) [5]. ASCII was first introduced in 1967. At this 
time computers were based on eight-bit architecture, the ASCII coding method uses 
seven bits patterns to represent data. Using only 7 bits, ASCII can express only 127 
characters. EBCDIC was developed by IBM in 1964 and uses 8 bits, therefore it can 
represent 255 characters.  ASCII is very commonly used today. Refer to the decimal, 
binary, hexadecimal, and ASCII codes in Tables 7 and 8.  

Hexadecimal 

Hexadecimal, or hex, is another common numbering system used in data 
processing. Hexadecimal is base 16 and is written using the symbols 
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F. All the positional values and general rules used 
with decimal and binary apply to hexadecimal. Refer to Table 9. 

The greatest use of hexadecimal is to humanize the language of communicating 
long binary words. Everything in the computer is represented in binary because that is all 
digital circuits understand. Yet as humans it is difficult if not impossible to communicate 
in binary. If someone called on the telephone and said they had a 1111 1111 1100 1010 
error on their system you would have to be a genius to understand that. But if we 
converted it to hex, it becomes simple to speak as FFCA.  

In converting binary to hexadecimal you group the binary number into four bits 
and start right to left convert to hex as show in example problem 2 below. Using 
conversion Table 10 makes it easy to convert binary to hex. 

Example problem 2: 

1000 1000 0100 00112 = 884316 

1100 1001 0011 11012 = C93D16 

1100 0101 0011 11002 = C53C16 

 

 



 27 

Table 7. ASCII Codes 

 

          



 28 

Table 8. Decimal, Binary, and Hex from Decimal Values 128-255 

 

 

 

 

 



 29 

Table 9 Hex breakdown 

Decimal Hex Binary 

 

0 0 0000 

1 1 0001 

2 2 0010 

3 3 0011 

4 4 0100 

5 5 0101 

6 6 0110 

7 7 0111 

8 8 1000 

9 9 1001 

10 A 1010 

11 B 1011 

12 C 1100 

13 D 1101 

14 E 1110 

15 F 1111 

 

Table 10. Converting Hex to Decimal 

    0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F. 

0  000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 

1  016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 

2  032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 

3  048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 

4  064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 

5  080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 

6  096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 

7  112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

8  128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 

9  144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 

A  160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 

B  176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 

C  192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 

D  208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 

E  224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 

F  240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 

 

             If you're having trouble getting the hang of the above chart, here's a hint.  
             Hex 41 is equivalent to decimal 65 [6]. 

.Encrypting Data 

 It is important to point out that for every method created to represent data 
in a computer system, there are similar methods used to scramble or encrypt data. One 
simple method of encryption is called the Vernam cipher named after Gilbert Vernam 
whom created numerous methods to encrypt data [7]. Vernam’s idea was to simply use a 



 30 

previously prepared key named a one–time pad that is used in combination with the 
character data (plaintext) to produce a scrambled cipher text message [8]. Plaintext data 
can be seen and understood by anyone. To implement a Vernam cipher encryption 
operation, the pad values are added to the numeric values that represent the plaintext that 
needs to be encrypted. For example, in plaintext the sentence “Im dying here” is 
represented with the numeric characters of 9 13 4 25 9 14 7 8 5 18 5. Numeric values are 
determine from there positional values of the alphabet. In the above example I is the 9th 
letter in the alphabet. As shown in Table 11 the plaintext values are added to the values of 
the one-time pad. The one-time pad is “oh boy” which is repeated for the specific 
character length of the plaintext. Note that if the sum of the two values exceed 26, then 
26 is subtracted from the total because there are only 26 letters in the alphabet and this 
keeps the numeric values in the 1 to 26 range.  To decrypt the first character of cipher 
text, which is the letter A, you take its value of 1 and subtract the pad value of 18 which 
equals negative 17, sense this is a negative number we must add 26 to it which equals 9 
which equals the plaintext value of the letter I.   

Table 11. Vernam cipher 

Plaintext I M D Y I N G H E R E 

Plaintext 

Values 

9 13 4 25 9 14 7 8 5 18 5 

One-time 

Pad Text 

O H B O Y O H B O Y O 

One-time 

Pad values 

18 8 2 18 25 18 8 2 18 25 18 

Sum of 

plaintext 

and pad 

27 21 6 43 34 32 15 10 23 43 23 

After 

modulo  

subtraction 

1   17 8 6    17  

Cipher text A U F Q H F O J W Q W 

 

References:  

[1] The IBM Key 026 Punch. Retrieved September 15, 2006, from Columbia education 
Web site: http://www.columbia.edu/acis/history/026.html 

[2] Introduction to Binary Numbers. Retrieved September 14, 2006, from Swanson 
Technologies Web site: http://www.swansontec.com/sbinary.htm 

[3]Greenfield, Joseph (1977). Practical Digital Design Using IC's. New York: John 
Wiley & Sons. 

[4] ASCII. Retrieved September 15, 2006, from Wikipedia Web site: 
http://en.wikipedia.org/wiki/ASCII 



 31 

[5] EBCDIC. Retrieved September 15, 2006, from Wikipedia Web site: 
http://en.wikipedia.org/wiki/EBCDIC 

[6] ASCII Chart. Retrieved September 15, 2006, from Jim Price Web site: 
http://www.jimprice.com/jim-asc.htm 

[7]Gilbert Vernam. In Wikipedia [Web]. Retrieved Nov 7,2006, from 
http://en.wikipedia.org/wiki/Vernam_cipher 

[8]Encryption. In Wikipedia [Web]. Retrieved November 7,2006, from 
http://en.wikipedia.org/wiki/Encryption 

 



 32 

Chapter 3: Introduction to Hardware 

An Overview 

 An interesting approach in examining how a computer works is to 
compare it to the human body. The central processing unit is much like the human brain 
because it can execute commands, make logical deductions, perform mathematical 
operations, and interface with input output devices. Computer input devices are the 
keyboard, mouse, and microphone, similar to the input devices of a human body the ears, 
eyes, and neurological senses. Following suit, the output devices of a computer include 
printers, displays, magnetic media, and speakers. While the output devices of a human 
body are vocal cords, arms, legs, hands, and feet.  Generally speaking the computer 
requires a means of interconnecting the processing unit to external devices. This 
communication path is called a channel, or more commonly, a bus. Most computers use 
three buses: address, data, and control bus, much like the body’s interconnection system 
of the nervous system, veins, and musculature structure.    

From an operations perspective, humans and computers perform tasks in a similar 
manner. Even though it appears that we do many things at once, like walk, talk and chew 
bubble gum, humans can only do one task at a time. The reality is that at any increment 
of time we are only doing one thing at that instance. A computer with one processor can 
execute one command at a time. Likewise, processors today are so incredibly fast that it 
appears that they do many things simultaneously, but the truth is that they only do one 
thing at a time like humans. In examining how humans perform simple tasks, we can gain 
insight to the inner working of a processor. When one task is started and continued until 
it is complete, it is performed in a dedicated mode. Some tasks or processes are best 
performed this way. When working on a complex task, it is best to not get interrupted, 
and continue to work until it’s completed. Dedicated processing is effective for some 
tasks, but there are also inefficiencies with this method. For example, in the process of 
doing laundry it may take an hour for the wash cycle and another hour for the dry cycle. 
By doing this in a dedicated fashion, during the two-hour duration one would be wasting 
time, waiting for the operation to complete, when in fact one could be doing something 
else. A method to overcome this inefficiency is to multitask. In multitasking, one has 
started multiple tasks and can interleave increments of time between tasks.  For example, 
consider a busy mother with three demanding child. Although all three children want the 
mother’s attention immediately, the mother cannot satisfy the needs of all children 
simultaneously, so she gives one child a slice of time to satisfy the first child needs, then 
a slice of time to the second and then the third.  

Furthermore, computer processors employ these same methods of dedicated 
processing, called batch processing. In addition, multitasking can be performed with one 
of two methods. The first is polling, which uses equal increments of time to interleave 
one task to the next, and interrupt method, which assigns priorities to tasks. With the 
interrupt method, if a low-priority task is running, a higher priority task can then interrupt 
the lower priority task to begin processing.  The computer assigns a maximum increment 
of time to a process. Once the current process has used up its time slice it becomes 
suspended, so the next process gets its time slice. In utilizing this methodology, the 
processor multiplexes between processes, so no process can hog the processor. Once its 



 33 

maximum time allotment is reached, the processor moves to the next process, if there is 
one. This technique is used for processes and for exchanging data with I/O devices. This 
greatly improves the amount of work or throughput completed by the processor. The 
processor is the fastest component of a computer system; all other devices are extremely 
slow compared to it. This method improves processing efficiency because the processor 
can be utilized to its fullest capacity by remaining busy by servicing other processes or 
devices instead of sitting idle waiting on some slow device or a dedicate process to 
complete. These above methods are used at the hardware level to exchange data between 
the processor and hardware I/O devices. They are also employed by the operating system 
to schedule jobs and tasks.   

At the hardware level, the interrupt driven method is used on hardware I/O 
devices. In this method, the computer architect determines what devices have a higher 
priority and which ones have a lower priority. Usually with I/O devices, the faster the 
device, the higher priority level assigned. Therefore, the processor devotes more time to 
faster devices than slower ones. The main objective is to keep the processor as busy as 
possible. A simple way to illustrate the interrupt driven method is by observing how 
humans process tasks. For example, if one is watching television, and the telephone or 
doorbell rings, one can momentarily suspend watching television to service the phone or 
doorbell request. When this request is completed, one can then go back to watching 
television.       

Functional Units 

Historically, the form, design and implementation of processors have changed 
dramatically in the last fifty years, but their fundamental operation has basically remained 
the same. Regardless of the number of millions of electronic components used in today’s 
processors, the processor still performs four basic functions: process data, store data, 
move data, and control data [1]. The top-level structure of a computer is referenced below 
in Figure 1, where four basic parts or subsystems are illustrated: the central processing 
unit (CPU), input output subsystem (I/O), main memory, and the interconnection 
subsystem or bus. The CPU is the brain that processes the data, memory is where data 
and programs are stored, and the I/O subsystem is the vehicle to communicate to the 
outside world via input and output devices. The system bus provides a communication 
path between the CPU and memory, the CPU and the I/O subsystem also provides control 
functions.    

 

Figure 1. Top level structure 

 



 34 

 Looking inside the CPU, it is comprised of four functioning parts; the arithmetic 
and logic unit (ALU), registers, control unit, and an internal CPU bus. These are shown 
in Figure 2.   The arithmetic/logic unit provides calculating ability and permits 
arithmetical and logical operations. The registers are temporary storage areas that hold 
data, keep track of instructions, and hold the location and results of these operations. 
The control section regulates the operations of the entire computer system, and the 
internal bus is the communication path between the subsystems. 

 

Figure 2. Overview of CPU 

CPU Operation 

Fundamentally, the operation of most CPUs, regardless of the physical form they 
take, is to execute a sequence of stored instructions in memory, called a program. 
Utilizing the concept of von Neumann’s stored program model, the program and data are 
stored in memory. The CPU performs four basic operations or cycles: fetch from 
memory, decode instruction, execute instruction, and writeback [2]. See Figure 3 for a 
picture of this. The first cycle, fetch, involves retrieving the instruction from memory and 
placing it in a work register, called the accumulator register. An instruction is comprised 
of two parts; the opcode, which indicates what operation to perform, and operand, 
containing additional information that the opcode can use. For instance, if the opcode is 
an ADD instruction, the operand may contain numeric data used with the instruction. 
Depending on the opcode, the operand can be numerical or character data, or an address 
value to use with the operation. The decode cycle breaks the instruction down to interpret 
the operation to perform. The execute cycle performs the instruction. The final cycle, 
writeback, simply writes back the results of the execution to memory. After the execution 
of the instruction and writeback of the resulting data, the entire process usually repeats 
until termination of the program.  

Although it may seem straightforward, there is extensive circuitry to perform and 
carry out the above four operations. For example, in the register functional unit of the 
CPU, there are many registers. Some are used as scratch pad areas for the programmer to 
temporarily store information, while some are specialized registers that keep track of 
internal operations. These include the program counter (PC), which contains the address 
of the next instruction to fetch, the (MAR) memory address register contains the next 
memory address to read or write to. Other registers are used to buffer data between 
memory and the I/O subsystem, and the program status word (PSW) which is a control 
register that keeps track of current conditions of the processor events using condition 
flags, such as machine exceptions, or arithmetic overflow or underflow. 



 35 

      

Figure 3. Inside the CPU 

The Instruction 

Conceptually, in designing a processor, the computer architect design team first 
determines the operational goals of the processor [3]. Once the operational goals are 
specified, the specifications and complexity of the instruction set would then be 
determined. This has direct impact on the internal structure of the hardware, and the 
amount of electronic circuits required. For example, early processors design was highly 
influenced by mathematicians, so all the processors where designed to perform precision 
mathematics [4]. Precision numeric floating point operations greatly complicated the 
hardware complexity. The main function of the processor is to interpret the instruction 
and perform the operation. If one wanted to design a simple set of instructions, they first 
have to determine the rules they want the machine to follow, such as instruction word 
size and integer or floating point precision. This process is similar to designing a verbal 
language. First, design the language semantics or protocols rules, and then determine 
what words to use.  In the example shown in Table 1, the pseudo-instruction length is 16-
bits, with the four most significant bits used for the op code and the other 12-bits for the 
operand fields. In using 4-bits for the opcode field, our design can only have a maximum 
16 instructions. Table 2 illustrates a simple set of pseudo-instructions.   

   

                                           Table 1. Example instruction format  

                                0           3 4              15 

    Opcode                 Operand(s) 

                                                     



 36 

Table 2. Sample instructions 

Opcode Operand 1 Operand 2 Instruction 

0001 0000   Numeric value ADD Immediate 

0010 Register Value Address value LOAD contents addr 
into reg 

0011 Register Value Numeric value MOV (Move)  

0100  Address JMP  to address 

1111  Address STORE acc to addr 

 Once an instruction is fetched from memory, it is decoded, which determines 
what the instructional operation the processor will perform. The instruction set protocol 
rules determine if the operand provides additional information. For instance, the opcode 
operation may require a numeric value, memory address, or register value, contained 
within the instruction. Once the decode step is complete, the instruction is then executed. 
For example, if the decode step determined the operation was ADD, the execute cycle 
would ADD the numeric value contained in the operand field to the number that is 
currently in the accumulator register. This sum would then be written back into memory 
during the writeback step. This entire process will repeat until the program is terminated.     

 

Figure 4. Program flow 

 In describing the operational characteristics of a program, all programs basically 
input data from a source, an input device or a file, manipulate this data in some fashion, 
and then output the data. A simple flowchart is shown in Figure 4. Fundamentally this is 
the basic premise for all programs. Table 3 illustrates what the binary instruction look 
like residing in main memory. 

                                                Table 3. Memory contents 

Memory address Instruction in 

memory 

Instruction Comment 

0000 0010 1010 0000 0100  Load contents from addr ‘01002’ to reg A 

0001 0001 1010 0000 0001 Add Immediate value ‘1’ to reg A 

0002 0100 0000 0000 0001 JUMP to memory address ‘0001’ 

0003 0000 0000 0000 0000 Contents of memory 

0004 0000 0000 0000 0000 Contents of memory 



 37 

The above program executes very quickly, by simply loading the value (zero) 
from memory address 0004 into register A, then increments the A register by 1 in an 
endless loop. This type of program is known as processor intensive, because it uses no 
I/O operations. One deficiency in the early computer designs was that they were 
inefficient performing I/O operations, because the processor controls all the I/O 
operations. If the program was generating printed output and the printer was out of paper, 
the processor would sit idle waiting for the print operation to complete, even if it took 
hours for an operator to load paper. As the computer progressed as a machine, this 
weakness was overcome. One way this was improved upon was due to the invention of 
control units. Control units are specialized processors external to the main processor that 
controls the I/O devices, which would offload all the I/O work from the main processor to 
the control unit. The main processor and the control unit would simply pass data back and 
forth.  

Memory 

 In modern day computer terminology, the word “memory” has numerous 
meaning. In the von Neumann model, memory is one of the core fundamental 
components, closely coupled to the processor. Early memory was referred to as core, 
because it was made from ferromagnetic core, which was magnetized to retain a bit 
value. There are many terms used to describe memory such as: main memory, random 
access memory (RAM), read only memory (ROM), primary storage, and internal storage 
[5]. External or secondary storage refers to tape or disk storage external to the processor 
unit. In contemporary terms, memory is commonly referred to as form of solid-state 
storage. Since memory is electronic and resides so close to the processor, access times to 
write and retrieve data from memory are very speedy. One way to increase system 
performance is to increase the size of memory. One thing is for certain, that if it was not 
for memory, the computer could never retain a value, or store and execute a program.  In 
fact, a computer would be reduced to the computing power of a simple calculator, 
without solid-state memory.    

 Memory is where programs and data are stored. The program instructions are 
retrieved from memory, decoded, and executed by the hardware. Memory used to be a 
very expensive component and therefore, early processors had little of it to utilize. 
Programs had to be written very efficiently in order to fix inside the amount of memory a 
particular processor had. If a processor had 16 K of main memory, programs had to be 16 
K or smaller in order to run, this memory limitation was very constraining. In early 
machines, one revolutionary method to overcome the memory size limitation is called 
virtual memory (VM). Virtual memory looks at secondary storage, such as a disk drive, 
as main memory. If a processor only had 16 K of memory and a program was larger than 
16 K in size, virtual memory broke up the larger program into smaller portions called 
pages.  If the page size was 4 K, the machine would load the first 4 K page into memory. 
Then as the program executed it would load or swap additional pages when required. 
Simply speaking, the virtual memory concept artificially increases the apparent amount 
of main memory in the computer.  Conceptually, virtual memory is like reading a book. If 
the reader is currently reading page one that would be known as the active page. (For this 
example pretend the reader can only retain one page at a time.) Now the reader can jump 



 38 

to another page, swapping in that information. One could sequentially read from page to 
page, or could randomly jump to any page next.    

The Bus 

Specifically a bus is a set of wires that send and receive data.  Most commonly, 
there are three buses: address, control, and data bus. The bus is used for transferring 
data among the components of a computer system. The easiest way to understand what 
a bus is and does is to think of it as a highway. A 8-bit wide bus is like a single lane 
road, it can only handle low traffic. A 16-bit bus is like a double lane road, a 32-bit bus 
is a four-lane highway, and a 64-bit bus is an eight lane superhighway. The more lanes 
a highway has, the more traffic it can handle. The same is true of a computer bus, the 
wider the bus, the more signals it can handle at any given interval. Overall this means, 
faster computing and greater throughput. The address bus works exactly like the data 
bus, except it only handles address traffic, and the data bus handles only data traffic. 
The control bus is for control functions. For instance the data and address bus can 
perform multiple functions depending on the status of the control bus. Furthermore, 
data and address buses are bidirectional, depending on the active control line at the time 
which determines which direction the data is moving. Control lines perform functions 
such as: Data In, Data Out, Memory Read, Memory Write, Address In, and Address 
out.  The address bus plays another extremely important role, depending on the design 
of the address bus that determines the amount of memory that can be addressed or used. 
In the original PC’s of 1981 they used an Intel 8086 chip that had a 20-bit address bus, 
which could only address a maximum of 1 megabytes of storage, verse a newer AMD 
Athlon 64 chip that uses 36 bit addressing, which can address 64 gigabytes of main 
storage.   

On a side note the width of the processor, address bus, and data bus do not have 
to be the same size. For instance, a computer system could be designed using a 32 bit 
processor, because it will be used for mathematically intensive calculation, but the in 
order to keep costs down the design team chose a 16 bit I/O bus because 16 bit I/O 
device are less expensive that 32 bit I/O devices.   

Clock 

 Another element that plays an important role is the clock, or oscillator. The clock 
is the main time reference that all events are coordinated or synchronized from. 
Everything from bus transfers to instruction fetch, decode cycles are synchronized using 
the clock cycle. This is the main pulse or heartbeat of the machine. Clock speed is 
something to be aware of when shopping for a new computer. In the early days of the PC, 
performance comparison of one computer to another could be determined by comparing 
the clock speed. Early PC clocks where 4.77 megahertz (MHz), so a newer model 
running at 10 MHz was twice as fast. System speed expressed in megahertz equals 
millions of cycles or instructions executed per second. A 4-gigahertz (GHz) system is 
running 4 billion cycles or instructions per second. What was once an easy number to 
quickly look at when shopping for machines, is not as accurate an indication any more, 
because we also have to consider the bus size.  For example, a 2 GHz 64-bit machine, is 
twice as fast as a 2 GHz 32-bit machine.   



 39 

 

 Storage Devices  

 Historically, the original storage device was the punch card. This had many 
limitations because it could only store 80 characters of data, and was terribly slow. The 
two most prevalent types of external or secondary storage today are magnetic disk and 
tape storage. These devices have been used for over fifty years and since then many 
improvements have been made in tape and disk technology. Original tape devices used 
12-inch reels of magnetic tape, and access time was slow because the data had to be read 
sequentially off the reel of tape. Years ago, this was a minor trade-off because the reels 
held much more data over cards. Disk storage was a massive improvement over tape, 
because it not only offered increased data storage capacity, but increased data accessing 
speed by utilizing random access methods. Basically, data storage methods are similar to 
audio or video storage used today. Tape operates much like videotape; one may have to 
view a whole videotape just to find a small segment at the end of the tape. Consequently, 
disk drives access data much like a photograph. If one needed to access the fourth song of 
a record, direct access allows the ability to skip directly to the fourth song. It’s interesting 
to look back at the original technology of early tape and disk devices. Even though many 
improvements have been made and new technology such as optical drives, have been 
accepted, the original design methodologies are still currently used.     

CISC vs. RISC 

Early computers where referred to as, Complex Instruction Set Computers (CISC) 
and utilized very powerful and complex instruction sets. These machines where designed 
this way because main memory was so expensive. In having instructions set that 
combined operations yielded more computing power while using minimal memory 
resources. For example, many early processors were designed to do precision floating-
point mathematics, which made the instruction set design and associated hardware more 
complex. This increased processor overhead even if floating point was not being utilized. 
In the 1970’s the trend moved from CISC processors to Reduced Instruction Set 
Computers (RISC) [6]. Upon analysis of processor instruction set mix, it was discovered 
that most processors only used a small percentage of their instructions. By designing 
simpler processors, this greatly reduced the cost and increased the speed of the processor 
hardware. The trend caught on, and most processors today employ the RISC model.    

Today  

 If we fast-forward to the technologies used today, not only have microprocessors 
become much faster, current computer systems incorporate many microprocessors in one 
system. In addition, microprocessors used for the main processor are also used in control 
units, attachment cards, and I/O devices. All devices in a computer system are now more 
intelligent and self reliant, buses are wider and internal with all components in a closer 
proximity. By keeping everything close, speeds are increased dramatically when 
transferring data. Processor technology has evolved from machines that took up rooms to 
the size of a silicon chip smaller than a thumbnail. Overall, the ultimate goal is to 
manufacture a mainframe the size of a human cell.    
 



 40 

References: 

 [1] Stalling, William (1999). Computer Organization and Architecture. Upper Saddle 
River, New Jersey: Prentice Hall. 

[2] Wikipedia . Retrieved September 21, 2006, from Central Processing Unit Web site: 
http://en.wikipedia.org/wiki/Central_processing_unit 

[3] Wikipedia. Retrieved September 21, 2006, from Instruction Set Web site: 
http://en.wikipedia.org/wiki/Instruction_set 

[4] Wikipedia. Retrieved September 21, 2006, from Computer Architecture Web site: 
http://en.wikipedia.org/wiki/Computer_architecture 

[5] Mueller, Scott (2004). Upgrading and Repairing PCs. Indianapolis, Indiana: Que. 

[6] Wikipedia. Retrieved September 21, 2006, from CPU Design Web site: 
http://en.wikipedia.org/wiki/CPU_design 

 



 41 

Chapter 4: Introduction to Operating Systems 

The textbook definition of an operating system (OS) is the software that controls 
hardware resources such as memory, central processing unit (CPU) time, disk space, and 
peripheral devices [1]. The operating system is the foundation on which applications run 
under control of, as well as acting as an interface between the user and the hardware by 
allowing shared hardware and data among users. However one chooses to define them, 
operating systems are an integral part of the computer system and must be understood to 
some degree by all computer users. 

In the beginning the first computers had no operating systems. Programmers 
simply input hand-coded machine instructions directly into memory in order to execute 
them. In the 1950s, the focus in design of operating systems was to simplify the job 
stream. The transition from one job to the next was difficult, and a great deal of time was 
required to make this transition. Computers from this era only performed dedicated 
processing, meaning the current job had total and dedicated control of the machine. This 
started the beginning of batch processing operating systems in which jobs were gathered 
in groups or batches. As each batch was processed, control was returned to the operating 
system and the operator could initiate the next batch process. In these uniprogramming 
environments, memory is divided into two parts, one for the operating system and the 
other for the program. These operating systems were crude at best, and only one job 
could be run at a time. If an urgent processing request was required, the current job would 
have to be terminated so the request could be initiated and executed.  In examining Figure 
1, one can see that memory has the operating system kernal and one user program loaded. 
The kernal is the core of the operating system which is loaded into memory. If the 
program is small, additional memory goes unused as seen in this example. After this 
application executes and terminates, a new application could then be loaded and 
executed.   

Operating 

system 

User program 

Unused memory 

Figure 1. Single-user, dedicated-storage allocation 

    The next generation of operating systems overcame the deficiency of dedicated 
processing by utilizing multiprogramming. This ingenious methodology simply utilizes 
storage management techniques to trick the system into appearing to run multiple jobs 
simultaneously. One multiprogramming technique is called partitioning which is 
illustrated in Figure 2. 

Operating system 

Partition 1 

Partition 2 

Partition 3 

 

                                        Figure 2. Fixed-partition multiprogramming 

 



 42 

 

Partitioning allows memory to be carved up into smaller pieces called a partition. 
This enables a unique application to be loaded into each partition. This works because the 
operating system rapidly switches system resources between each partition for an 
increment of time. During this time, the active application has control over all system 
resources and appears to be a dedicated process running. In partitioning, the operating 
system acts as the traffic cop or gatekeeper. It opens the gate for each individual partition 
to have access to the hardware for a period of time, as illustrated in Figure 3. 
Multiprogramming operating systems are complex because they require all hardware 
registers and current processes status to be stored and recalled as they switch from one 
partition to the next. Registers are temporary high-speed memory internal to the CPU.  In 
spite of this complexity, faster and more powerful hardware made this switching 
seamless, appearing nonexistent. To the user, it appears that all jobs are running 
simultaneously and gives the illusion that each job has exclusive access to the machine. 
This method greatly increased performance, by simply having multiple applications 
resident in memory, which simultaneously reduced job setup time. Partitioning can be 
implemented by using static fixed sized partitioning, so when a process is loaded into 
memory, it is placed in the smallest available partition that will hold it. The other more 
flexible scheme is variable-size partitions, when a process is loaded into memory it is 
dynamically allocated the exact amount of memory the process requires.  

 

Figure 3. Memory partitioning 

 Partitioning led the way for more innovation such as, timesharing, which enabled 
users to interface via terminals to retrieve interactive data. Real-time processing also 
emerged, which provides immediate responses. Private industry and the military utilized 
real-time processing used in many manufacturing plant control functions, to monitor 
thousands of things concurrently. Partitioning increased system flexibility; many 
partitions could now run simultaneously with different applications such as interactive, 
batch, and production. With the proliferation of magnetic disk drives, many deficiencies 
in punch cards and sequential-access magnetic tape processing were overcome. The 
biggest issue with sequential-access devices like tape is that the current operation would 
have to complete before the tape could be rewound and another operation started. 
Random-access disks did not have this problem because the heads could rapidly move to 
different areas on the platters. A process could read from one area of a disk and another 
process could quickly write to another area of the same disk.  Likewise disk drives were 
incorporated as buffer areas for I/O operations. This system process was called spooling. 
Spooling overcame I/O dependencies when outputting to slow printing devices.  Spooling 



 43 

simply gave the illusion that a file is sent to a slow printer when instead the file was 
written it to a high-speed disk, which could be sent to a printer at a later time.    

Process management 

The above descriptions of operating systems are generalizations at best. There are 
numerous complexities with all aspects of operating systems. It has taken many years of 
development and refinement to get to where we are today.  Process management is one 
area that is highly complex. A process is a program in execution, also known as a job or 
task, and is a unit of work in a system. There have been numerous developments in order 
to handle job scheduling. It was easy on dedicated systems because only one process was 
active at a time. The computer operator had total control over job scheduling. Job 
scheduling takes on a whole new dimension when one examines the many active 
processes running inside today’s modern computers. How does the operating system 
know which one to execute, and in what order? There have been many mathematical 
algorithms devised to quantify different methods employed.  We will explore some of 
these methods.  

In addition when dealing with scheduling, jobs can be preemptively or non-
preemptively scheduled. A task is non-preemptive when the task has the CPU allocated to 
it and is executing, the task cannot be interrupted until it is completed. Preemptive means 
the task can be interrupted before completion. Non- preemptive is used in extremely 
critical applications such as in a real- time environment. Priority methodologies have 
been used where jobs could be prioritized in the schedule based on importance. Some 
criteria to consider in process scheduling include (1) fairness, so that all processes are 
treated equally so that no one process can over-utilize resources; (2) maximizing 
throughput, by scheduling processes to keep the CPU always utilized; (3) balancing 
system resource use, trying not to over utilize some I/O while under utilizing other I/O; 
(4) avoiding indefinite postponement of processes; (5) avoiding process deadlocks and 
system bottlenecks [2].  

One of the simplest methods used in scheduling is First-In-First-Out (FIFO), 
shown in Figure 4. This system executes jobs in the order they arrive in the job queue. 
FIFO is simple to implement but has drawbacks such as a long job would make short jobs 
in the queues wait. One method created to overcome this is Round Robin (RR) 
Scheduling.  In Round Robin, processes come out of the job queue the same as FIFO, but 
they are given a limited amount of CPU time. Once this time slice is completed, the 
process goes back into the queue. See Figure 5 for an illustration of this. Shortest-Job-
First (SJF) and Shortest-Remaining-Time (SRT) are two other ways to increase system 
output by having the shortest jobs run first. 

 

Figure 4. FIFO job scheduling 



 44 

 

Figure 5. Round-robin scheduling 

 In short, we’ve reviewed only a few of the scheduling mechanisms and 
terminology. There is no definitive conclusion to draw in determining what methods are 
better than others. There is no one-size-fits all answer. In some applications, one method 
may work better than another to address a particular system performance issue. The truth 
of the matter is that most modern scheduling mechanisms are hybrids, incorporating the 
best features of multiple methods.    

Storage Management 

Storage management is another complex topic about which much could be 
written. To gain a basic understanding of storage management, we will touch on key 
topics.  In dedicated processing, an application is loaded in contiguous memory space. 
This is simple because the only requirement is that the program size must fit the storage 
size. A flaw with this is that memory is expensive and as applications grew if they 
exceeded system memory size they could not load and execute.     

 

Figure 6. Virtual storage 

 Virtual storage solved this problem. Virtual storage provided the ability to address 
storage space larger than what is actually available in main memory. This virtualization 
theory takes the storage capacity of a hard drive and makes it appear as main memory by 
carving up memory and disk drive storage into smaller chunks called pages or segments. 
This is shown in Figure 6. Now processes would load into main memory (now call real 
storage), one page at a time. As the process executed, it would pull in additional pages as 
needed from disk or virtual storage.  Dynamic address translation tables and additional 
hardware mechanisms kept track of all the virtual address pages. This unlimited artificial 
memory was transparent to the user, and it freed the programmer from worrying about 



 45 

machine limitations in order to concentrate on application development. It is important to 
note that there is much more to virtual storage techniques. In fact, virtual storage 
management is very similar to process management. Many strategies are used to optimize 
page replacement such as, First-In-First-Out (FIFO), Least-Recently-Used (LRU), Least-
Frequently-Used (LFU), and Not-Used-Recently (NUR) page replacement. Illustrated in 
Table 1 are the different methods of storage organization.   

                                           Table 1. Storage organizations [2] 

                Real                 Real                             Virtual 

              Single  

               user 

          dedicated 

             system 

                Real  

              storage 

     multiprogramming  

              systems 

                            Virtual 

                            storage 

                     multiprogramming 

                             systems 

      Fixed     

   partition    

         

  Variable 

  partition 

Pure 

paging 

       Pure 

segmentation 

  Combined 

      paging 

segmentation 

 

Popular Operating Systems  

OS360 & VM 

In the 1960’s, the massive development in hardware drove similar developments 
in operating systems. One of the most significant events was the announcement of the 
IBM system 360 hardware and operating system (OS360).  This product was 
revolutionary and way ahead of its time. The OS360 was the first operating system that 
was truly upward compatible within the 360 processor series. Likewise the most radical 
innovation born out of this era was the virtual machine (VM). VM was introduced on the 
system 360 Model 67 processor [3].  The virtual machine concept was similar to 
partitioning, but instead of having a unique area in memory for different applications to 
reside in, virtual machine took partitioning to the next level. VM carved up areas in 
memory in order to have discrete operating systems executing. This essentially creates a 
number of sandboxes in memory for operating systems to play. These operating systems 
are completely isolated from one another, and each operating system can peacefully and 
concurrently coexist. One could be rebooting without affecting another. Through 
software virtualization, the user was given the appearance to have more than one physical 
hardware system installed. VM has evolved over many decades and has many new and 
improved features, it is still very popular today and used extensively. Today, it is 
popularly known as Logical Partitioning (LPAR).  Some reasons to carve up a physical 
system are to isolate production and development systems, and isolate different time 
zones or customer regions. It is effectively used in a test environment it is common to 
install a new version of the OS or application software in a test LPAR before it putting it 
in production. LPAR is robust in an educational environment, where a college could 
carve up one physical system into a thousand logical systems, so students could be 
assigned their own virtual system. This is also extensively used in server consolidation, 
by implementing one small mainframe with LPAR, which can replace a room full of 
server racks.      



 46 

Timesharing Systems 

On a different development front in the 1960's, researchers and universities 
created a number of timesharing systems. The goal of timesharing was that users could 
share applications and data concurrently. One of the first such timesharing systems was 
developed at Massachusetts Institute of Technology. It was called the Compatible Time 
Sharing System (CTSS).  This early CTSS evolved into a next-generation operating 
system called MULTIC (Multiplexed Information and Computing Service) [4]. This was 
a cooperative project led by MIT, Bell Laboratories, General Electric, and later, 
Honeywell. Although Multics was not successful and never reached a commercial 
product it had a major impact due to many new concepts such as high availability, 
dynamic linking, dynamic hardware reconfiguration, and use of daemon processes. 

UNIX 

 In 1969, Bell Laboratories dropped out of the Multics project and moved on to 
develop Unix. Ken Thompson, and Dennis Richie developed Unix jointly. Richie had 
worked on the Multics project and Unix is highly influenced by Multics. The name Unix 
is merely a pun toward Multics. Unix evolved though a number of different rewritten 
versions running on different hardware. Version 3 was written in a high level language 
also developed by Richie called C [5]. By writing Unix in a high level language, this 
made it portable to different hardware platforms. Unix became widely used by Bell 
Laboratories and at many universities. Unix development bounced around Bell Labs and 
AT&T though the 1970's. Unix development was also emerging on the educational front 
at University of California at Berkeley, University of Illinois, Harvard, and Purdue. The 
strength in Unix came from an extremely efficient, powerful core called the kernel. On 
top of the kernal were tightly coupled modules that provided features and functionality to 
Unix such as text editor (vi), send mail and the Internet protocol (TCP/IP).   

To illustrate today’s popularity of Unix and Unix variants, Unix can be run on all 
hardware platforms from PC desktops, midrange systems, and the most powerful 
mainframes. Many variants are offered from many vendors such as AT&T, SUN systems, 
HP, Berkeley, and IBM just to name a few. The Internet is built off of Unix-based 
servers. Currently in September 2006 of the almost 97 million websites that comprise the 
Internet, almost 70% of the hosts are running Unix and Unix variants operating systems 
[6]. 

MS-DOS  

 Microsoft’s Disk Operating System (DOS) was a single user, single task, 
operating system that was born in the beginning of the IBM Personal Computer craze. 
IBM outsourced to Microsoft to supply DOS, based on the 16-bit architecture of the PC 
instead of acquiring another popular 8-bit operating system at the time called CP/M. The 
original PC was based on Intel’s 8088 microprocessor, capable of addressing 1 meg of 
memory. Of this 1 meg of memory, DOS supported 640 K for itself and applications [7]. 
This was a significant advancement at this time because previous systems only supported 
64 K of memory.  DOS used a Command Line Interface (CLI), meaning everything was 
done using text commands entered via the keyboard. It was named Disk Operating 
System because one of its major features allowed the use of floppy and hard disk drive 



 47 

file management support. Even though it was not packed full of bells and whistles, it was 
a functional operating system. DOS gained huge success simply because it was the first 
one for the personal computer. DOS version 1.0 was released in August 1981, and there 
were at least ten other versions released until the last commercial version (7.0) was 
released in 1995.   

Windows 

 Windows started out as a kinder gentler form of DOS. Window 1.0 was released 
in 1985, as a graphical interface (GUI) built on top of DOS. The premise was that users 
could load numerous applications concurrently into memory and then switch between 
them in the windows environment. This GUI revolutionized how the user launched 
applications one simply used a pointing device to maneuver in this environment. 
Windows has evolved and many new products and releases have been announced. 
Windows evolution and growth is similar to the early mainframe operating systems. As 
microprocessor technology caught up to the robustness of a mainframe processors, 
Windows grew to support these features.   Windows has monopolized the desktop market 
share, and the Network Operating Systems such as NT.x, Windows 200x, running on 
today’s powerful servers has cut into the midrange market share.  

Linux 

 The Linux movement started in 1991 when student Linus Torvalds wrote the 
kernal from a Unix variant Minix. This powerful, well-written kernel was released and 
freely distributed under the GNU general public license and its source code is available to 
everyone [8]. This started a new revolution of worldwide collaboration into Linux 
operating systems and its many variants. Perhaps it was the anti-Microsoft sentiment that 
started this movement, but it has gained much momentum and has been embraced by 
many including major computer vendors. Its strengths include no cost, similar to Unix, 
and the kernal is so small and efficient it can run on any hardware. In less than fifteen 
years, Linux has grown from a hobbyist project to becoming a viable alterative for 
proprietary Microsoft and Unix operating systems. 

Security Concerns 

 The term “secure operating system” maybe a misnomer, because what could be 
considered secure in one instance may not be in another.  In 1983, the Department of 
Defense published a standard called the Trusted Computer System Evaluation Criteria 
(TCSEC). The TCSEC, frequently referred to as the Orange Book, is a standard that sets 
basic requirements for assessing the effectiveness of computer security controls [9]. The 
TCSEC standard has evolved over the years and is now replaced by the development of 
the Common Criteria international standard published in 2005 [10]. Common Criteria 
does not provide a list of product security requirements or features that products must 
contain. Instead, it describes a framework in which computer system users can specify 
their security requirements.  

 



 48 

 Some key items to consider when evaluating an operating system based on 
security implications include (1) mandatory security policy which enforces access control 
rules based directly on an individual's clearance, authorization for the information and the 
confidentiality level of the information being sought; (2) accountability which requires 
identification, authentication, and auditing mechanisms to recognize, verify, and audit the 
user activities; (3) assurance that the computer system must contain hardware/software 
mechanisms that can be independently evaluated to provide sufficient assurance that the 
system enforces the above requirements.  

References 

 [1] Silberschatz, A, & Galvin, P (2004). Operating System Concepts. John Wiley & 
Sons. 

[2] Deitel, H (1984). An Introduction to Operating Systems. Addison- Wesley Publishing 
Company. 

[3] Virtual machine. Retrieved September 24, 2006, from Wikipedia Web site: 
http://en.wikipedia.org/wiki/Virtual_machine 

[4] Multics. Retrieved September 24, 2006, from Wikipedia Web site: 
http://en.wikipedia.org/wiki/Multics 

[5] UNIX. Retrieved September 24, 2006, from Wikipedia Web site: 
http://en.wikipedia.org/wiki/UNIX 

[6] September 2006 Web Server Survey, Retrieved September 24, 2006, from Netcraft 
Web site: http://news.netcraft.com/archives/web_server_survey.html 

[7] MS-DOS. Retrieved September 24, 2006, from Wikipedia Web site: 
http://en.wikipedia.org/wiki/MS-DOS 

[8] Linux. Retrieved September 24, 2006, from Wikipedia Web site: 
http://en.wikipedia.org/wiki/Linux 

[9] Trusted Computer System Evaluation Criteria. In Wikipedia [Web]. Retrieved 
November 12, 2006, from http://en.wikipedia.org/wiki/TCSEC 

[10] Common Criteria. In Wikipedia [Web]. Retrieved November 12, 2006, from 
http://en.wikipedia.org/wiki/Common_Criteria 



 49 

Chapter 5: Digital Electronics 

 The term “digital electronics” usually refers to the physical circuits of a computer 
system such as electronic gates, switches, relays, or transistors. However, these 
components comprise only one part of digital electronics for it is a subject that has a 
much broader meaning.  It is a methodology of transforming logical statements into 
boolean expressions, whose meaning, in its simplest form, can be represented simply by 
the absence or presence of an electrical signal: an on or off. Boolean algebra deals with 
logic rather than calculating numeric values, and was developed by George Boole in the 
mid 1800s [1]. It is based on the idea that logical propositions are either true or false. 
“True” propositions correspond to the digital logic value or level of 1, while “false” 
proposition correspond to 0. These two logic states of 0 or 1 fit perfectly into the binary 
numbering system. In electronic logic, the logic level is represented by a voltage level. A 
digital circuit takes one or more logic level inputs and produces a single output voltage 
using a basic building block called a logic gate. There are seven fundamental logic gates 
used today. In combining or cascading these basic gates, one can construct complex 
digital circuitry used in today’s electronic devices.  

Basics 

 Digital electronics is a conglomeration of many disciplines such as elementary 
logic, boolean algebra, and logic gates. We started learning elementary logic in grade 
school with simple mathematical word problems. In the language of logic, one could 
examine simple sentences to determine if they are logically true or false statements. We 
unconsciously use elementary logic daily. By examining a simple statement such as “Sue 
wears a hat and gloves when it’s cold. Today is cold”.  One can conclude that Sue is 
wearing her hat and gloves. In fact, many of us use boolean expression without realizing 
it. If you use any search engines you can refine your searches by utilizing boolean 
operators.  For example, consider using Google’s search engine to find a pair of bowling 
shoes. If one searches on “shoes” this produces 389,000,000 hits, while searching on 
“bowling” produces 97,000,000 hits. But if you search on “bowling shoes” this produces 
8,370,000 hits. Google’s boolean default is “AND” which means search engine joins 
words using the “AND” operator. You can use other operators such as the “OR” operator 
or “NOT” operator to exclude words in your searches.    

Boolean algebra 

 There are several basic boolean operations, which may be used alone or in 
combinations: logical inversion (NOT gate), logical multiplication (AND gate), logical 
addition (OR gate) [2]. Boolean algebra is expressed by using variables and operators, 
similar to mathematics.. Variables have values of 1 or 0, where 1 equals the logical state 
of “true” and 0 equals the logical state of “false”. The basic logical operations are AND, 
OR, and NOT, which are symbolically represented by a dot (·), plus (+), and over bar (¯ ). 
Example 1 below illustrates boolean expression  

Example 1 – Basic Logic Operations  

A AND B = A ·  B 
                        A   OR  B = A + B 



 50 

                        NOT A = Ā ( A = NOT A) 
Truth table 

Truth tables are mathematical tables used in logical expressions to show all 
possible combinations of values that logical variables may have [3]. Truth tables are used 
to reduce basic boolean operations to simple correlations of inputs to outputs. To help 
understand Boolean or logic expression, one must understand truth tables. A truth table is 
a simple way to illustrate and express all the variable options of a logic expression. 
Shown in Table 1 below is a truth table for the boolean expression A AND B = C.  

                                         Table 1. Truth table A AND B = C 

Input Output 

A B C 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

You read a truth table by rows, starting from the top row and reading left to right. 
The rows are read like this: 

     If A is 0 AND B is 0 then C is 0.   

                 If A is 0 AND B is 1 then C is 0.   

                 If A is 1 AND B is 0 then C is 0.   

                 If A is 1 AND B is 1 then C is 1.   

Furthermore, one could think of these statements in terms of true and false. For 
example, if A is true, AND B is true, then C is true. Essentially, 1 represents a true value, 
and 0 represents a false value. In digital electronics, truth tables are shown using ones and 
zeros. A zero represents no voltage and a one represents voltage. Also notice that A and 
B are referred to as the input side, and C is the output side. This is how a digital logic 
gate works. The input side of a gate can have one or many inputs, but only one output. In 
this example, if input A has voltage (logic state 1) AND input B has voltage (logic state 
1), then output C has voltage (logic state 1).    

Electronic Gates   

 An electronic gate is the fundamental building block of digital electronics logic 
circuits [4]. Gates are constructed from transistorized electronic circuits. However one 
does not need to understand the electronics behind the gate in order to implement them. 
Gates are simply used like building blocks, assembled and interconnected together to 
produce an output based on a boolean expression.  There are seven basic gates used in 
digital electronics: AND, OR, NOT, NAND, NOR, XOR (exclusive OR) and XNOR 
(Exclusive NOR) [5]. Gates are defined in three ways: graphic symbol, algebraic 
notation, and truth tables. Tables 2 and 3 shown below have all seven basic gates 
illustrated. The first gate shown is the AND gate that can have two or more inputs. Its 
output is the logical AND of the inputs. Therefore, all inputs must be 1 in order for the 



 51 

output to be a 1. With the OR gate, if one or more inputs are 1, it produces an output of 1. 
The inverter’s function is to change a 1 input to a 0 output, or a 0 input to a 1 output. 
Hence, it inverts or complements the signal. An inverter has only one input and one 
output, and its symbol is a small triangle with a small circle on the output. The NAND 
gate takes the AND of its inputs, and then inverts the output. The symbol is an AND gate 
with the inversion circle on the output. The NOR gate takes the OR of its inputs and then 
inverts it.  The symbol is an OR gate with the inversion circle on the output. The 
exclusive OR (XOR) is shown in Table 3. The logic behind the XOR gate is this: if either 
A OR B is 1, but NOT both, C is 1. Its symbol is an OR gate with an extra curved line in 
front.  The exclusive NOR (XNOR) shown in Table 3 is similar to the exclusive NOR but 
with the output inverted. Its symbol is an XOR gate with the inverter circle on the output. 
It logic is A or B equal NOT C, as shown in the truth table. 

Implementation 

 To implement  logical expressions into digital circuits, you simply substitute 
hardware gates for the given boolean expression [7]. For example to implement the 
expression Q = (A + B)C + ĀBC, you simply substitute the logical operands for the 
digital gates.  In this case (A + B)C means input A  is OR’ed (+) to input B, its output is 
the AND’ed with C, this result is OR’ed to the output of the expression ĀBC, NOT A 
AND B AND C. The circuit is shown below in Figure 1. 

 

Figure 1. Implementation of an expression 

Binary adder 

In digital electronics, gates can be connected together to implement expressions 
from truth tables or boolean operations. Let’s take it a step farther to see how binary 
addition works inside the hardware. Binary addition can be represented with the truth 
table as shown Table 4 below. Binary addition differs from boolean algebra in that the 
end result includes a carry. When adding two bits together they produce a result and a 
carry bit. 



 52 

Table 3. Simple logic gates [6] 

                                          

 

Name Symbol Algebraic Function Truth Table 

AND 

 

      C = BA •  
           or 
        C = AB 

A B C 

0 0 0 

0 1 0 

1 0 1 

1 1 1  

OR 

 

      C = A + B A B C 

0 0 0 

0 1 1 

1 0 1 

1 1 1  
NOT 

 

        A = C  A C 

0 1 

1 0  

NAND 

 

      C = ( )AB  A B C 

0 0 1 

0 1 1 

1 0 1 

1 1 0  
NOR 

 

      C = ( )BA +  A B C 

0 0 1 

0 1 0 

1 0 0 

1 1 0  

XOR 

 

A + B = C A B C 

0 0 0 

0 1 1 

1 0 1 

1 1 0  

XNOR 

 

A + B = C  A B C 

0 0 1 

0 1 0 

1 0 0 

1 1 1  



 53 

Table 4. Single-bit adder 

Input Output 

A    B Result Carry 

1 1 0 1 

1 0 1 0 

0 1 1 0 

0 0 0 0 

 

 Input A is the first operand, B is the second operand, C is the carry bit, and 
R is the result. The truth table is read left to right. A plus B equals result R, with the 
Carry C. The rows read like this: 

If A is 1 plus B is 1 then R is 0 and C is 1.   

If A is 1 plus B is 0 then R is 1 and C is 0.   

If A is 0 plus B is 1 then R is 1 and C is 0.   

If A is 0 plus B is 0 then R is 0 and C is 0.   

 If you examine the truth table closely, you can implement a 1-bit adder by using 2 
gates an exclusive OR and an AND Gate as shown in Figure 2 below.  

 

Figure 2. Logic gates for 1-bit adder 

 In order to create a wider adder, it simply requires the use of more logic gates. 
This can be accomplished by cascading adders so that the carry bit from one adder is 
provided as the input to the next adder, and so on. This requires many logic gates to 
implement the 16 or 32 bit adder that is commonly used today. Today, a computer 
engineer does not have to worry about designing circuits using discrete components, 
because discrete circuits are placed on integrated circuit chips. One integrated circuit chip 
may have all the circuit functionality to perform a 16-bit add. Thus, an engineer can 
quickly implement circuits using a “black-box” approach by implementing integrated 
circuits.   



 54 

References 

[1]Boolean algebra. In wikipedia [Web]. Retrieved Oct. 2006, from 
http://en.wikipedia.org/wiki/Boolean_algebra 

[2] Digital Circuit. In wikipedia [Web]. Retrieved Oct. 2006, from 
http://en.wikipedia.org/wiki/Digital_electronics 

[3]Truth table. In wikipedia [Web]. Retrieved Oct. 2006, from 
http://en.wikipedia.org/wiki/Truth_tables 

[4]Logic gate. In wikipedia [Web]. Retrieved Oct. 2006, from 
http://en.wikipedia.org/wiki/Logic_gate 

[5]Brain, Marshall How Stuff Works. Retrieved October 16, 2006, from How Boolean 
Logic Works Web site: http://computer.howstuffworks.com/boolean1.htm 

 [6]Greenfield, Joseph D. (1977). Practical Digital Design Using IC's. Canada: John 
Wiley & Sons, Inc. 

[7]Stallings, William (1999). Computer Organization and Architecture: Design for 

Performance. Upper Saddle River, New Jersey: Prentice Hall. 



 55 

Chapter 6: Introduction to DOS 

In order to gain a fundamental understanding of any operating system such as 
MS-DOS or PC-DOS, one must have a basic understanding of the hardware. This enables 
one to know how the operating system and hardware interface with each other. Hardware 
and software are two different entities that are so closely intertwine, it can be difficult to 
distinguish between them at times. On one end of the spectrum, we have application 
software and on the other, we have hardware. The gray area between the two is called the 
Basic Input Output System (BIOS). It is also the layer between the physical hardware and 
the operating system. BIOS is special programming code in that it does not get loaded 
into memory like application programs, but instead it is permanently written or burned 
into Read-Only Memory (ROM) chip that resides on the system board. (Code that is 
burned onto memory chips is also referred to as firmware.) BIOS is a core component 
and is the reason that different operating systems can be loaded onto the same hardware 
platform. As long as the operating system is designed to be BIOS compatible, it will run. 
Application programs don’t need to know specifics about the hardware because they 
interface with the operating system, which interfaces with BIOS, which in turn interfaces 
directly to the hardware. A PC system can be described as a series of four layers, with 
hardware, and software, as seen in Figure 1. Using this layered approach, applications are 
transparent to the hardware platform it runs on.    

 

Figure 6. Four layers of a PC 

DOS is a single-user, single-task operating system that consists of two primary 
components; the input output system and the shell. The I/O system is program code that 
is loaded into low memory on startup and controls the interaction of the I/O devices on 
the system. The shell is the computer user’s interface. Its primary purpose is to interpret 
commands and translate them into actions. To explore how an operating system works, 
let’s start from the beginning. In the PC realm, this start-up process is called booting on 
other platforms it is also know, as an Initial Program Load (IPL). Booting is the chain of 
events that occur from when power is first applied to the final step, when the operating 
system is completely loaded.  

How DOS Loads and Starts (Simplified Version)  

Step 1.  Power on, after power supplies stabilize, hardware sends Power_Good_Signal to 
system board / microprocessor.   

Step 2.  Microprocessor reads and executes ROM BIOS code. ROM BIOS starts Power 
On Self Tests (POST). POST tests the basic functionality of the PC to determine critical 
components are functioning so the OS can load.  Memory and video are critical and 
tested.  If a POST test fails it reports the error using beep codes, because the video system 
may not be started yet. Successful completion of POST is indicated by a single beep. 



 56 

 

Step 3. BIOS searches for a boot record at cylinder 0, head 0, sector 1 on the default boot 
device and then alternate boot devices such as; diskette, disk, CD, DVD, or network 
drive. The Master Boot Record (MBR) is loaded into memory. This is also known as the 
bootstrap loader.  

Step 4. Core OS files loaded into memory and executed. (IO.SYS, IBMBIO.COM) All 
initialization code loaded and executed. The DOS file system is now active. 

Step 5. CONFIG.SYS file loaded and executed. This file defines devices and loads 
software drivers associated with them. 

Step 6. COMMAND.COM is loaded. This is the user shell. If AUTOEXEC.BAT file is 
present COMMAND.COM loads and executes it. AUTOEXEC.BAT is a startup file you 
can specify what applications you want automatically started on boot. This is when you 
see the Command Line Interface (CLI), otherwise known as the A:\> or C:\> Prompt. 
The system is now ready to accept commands.  
 

Command Essentials  

Once DOS completes booting, it sits at the command prompt (A:\>) waiting for 
commands to execute. There is a specific set of rules or syntax commands must follow.  
The problem is that there are many different commands. Some have no options while 
others have many options. It is simply a matter of becoming familiar with commonly 
used commands. Generally, DOS command begins with a keyword or name of command, 
and can be followed by parameters or arguments, then command line switches. 
Commands generally follow the format of: 

KEYWORD Drive, File, Switches 

  Or 

KEYWORD SourceFiles, File Switches 

 To understand all the commands and options one can either consult a command 
reference book or use the DOS built in help feature. To invoke help one can simply type 
the command followed by “/?” . (KEYWORD /?) or type “help” before the keyword.  
Figure 2 shows a help screen example for the COPY command. All commands follow a 
specifically defined format notation.  

• You must enter any words shown in capital letters (keywords are represented this 
way). 

• You must supply any items shown in italic letters 

• Items in square brackets [] are optional. 

• Items separated by a bar ( | ) means you can enter one of the other ( Example OFF 
| ON )    

• An Ellipsis (…) indicates you can repeat as many time as you want. 

• You must include all punctuation, except square brackets and vertical bars. 



 57 

File switches are entered by using the forward slash (/). A switch is a parameter 
that turns on the optional function of a command. For example the DIR command lists 
files in the current directory. Now, if you enter DIR /S this switch will show all files not 
only in the current directory but in all subdirectories.    

 

Figure 2.  Copy /? Command 

The Heart of DOS 

The main propose of DOS is to interface with a disk hence the name Disk 
Operating System. The disk can be either a floppy diskette or a hard drive. In order to 
understand DOS’s role and file system basics, one must first understand the hardware. A 
disk is simply a circular platter made of either metal or plastic that is covered with a 
magnetic material.  Diskettes are plastic single-platter devices and hard drives can have 
multiple platters. In either case, there is a read write head assembly that is used to access 
areas on the disk. The circular platter is organized into a number of concentric rings, 
called tracks. Tracks are divided into smaller pieces called sectors. (See Figure 3.) The 
number of tracks and sectors a platter has determines the amount of data the device can 
store. The original diskettes were designed to store the same amount of data that a box of 
punch-cards could hold.    



 58 

                                

Figure 3. Diskette layout 

 Here is closer look into how data is organized on a platter. First, data is read or 
written one block at a time. The size of the data block usually is the same size as a sector. 
Early sector sizes were 80 bytes, the same as an 80 character punch-card. Currently 
common sector sizes for diskettes are 512, or 1024 bytes. DOS looks at data on a disk not 
in terms of tracks and sectors, but in a continuous array of logical sectors. Logical sectors 
are numbered starting with the outermost track with sector 0, continuing sequentially to 
the innermost track.  Data is organized basically just like a written book is structured. In a 
book, the table of contents points to the specific chapter where the data is located. (Table 
1 shows the layout of data on a diskette.) 

Table 1. Diskette sector layout [2] 

 

       Logical Sector Number on diskette                                   Use 

0 Reserved for bootstrap loader 

1-6 

7-12 

FAT 1  
FAT 2 

File allocation 
Tables (FATs) 

13-29 Directory 

30-2001 Data Area 

 

  The file allocation table (FAT) is the master index of all files on the disk 
similar to a table of contents in a book. There are two copies of the FAT table because it 
is so important [5].  The directory is a table that contains information about each file such 
as file name, size, date and time of creation, data and time when the file was last written, 
and any special attributes. The rest of the disk is for the data area. When a file is created 
or saved, three things occur: 1) An entry is made into the FAT table to indicate where the 
file is stored in the data area of the disk. 2) A directory entry is made with the file name, 
size, and link to the FAT table, and other information. 3) The data is written to the data 
area.  One item to observe is that a file usually has a minimum size it cannot be one 
logical sector in size. Diskettes use the term, allocation unit, which assigns a number of 
logical sectors to a file. Hard drives use the term clusters to group a number of logical 



 59 

sectors together for the minimum file size. The number of logical sectors in a cluster or 
allocation unit can vary depending on the format density of the media.     

DOS introduced multi-level hierarchical directories which allowed for better 
organization of files, and multiple directories that allowed many more files to be stored 
on the hard disk. The top layer of the directory structure is called the root, and supports a 
number of sub directories, below it. This allows for greater flexibility of file naming over 
a flat directory structure. See Figure 4. Under the root directory, there can be multiple 
levels of sub directory. Sub directories simply help keep your files organized. Think of a 
directory as a kitchen drawer, one could organize towels, silverware, and junk in different 
drawers. Similarly one could create different directories for different regions, or for 
different files types such as; text, program, or data.     

 

Figure 4. Directory structure 

  

Path Concepts 

   DOS identifies the drive component by the drive letter, followed by a colon, and 
then a backslash. (A:\) DOS continues this convention to distinguish subdirectories. For 
example in the path expression; A:\DOS\GAMES\PACMAN, this tells DOS to look for 
files starting on the A drive, moving into the DOS directory, moving into the GAMES 
directory, into the PCMAN directory. A path expression gives DOS directions to 
directories. DOS provide the command MKDIR or MD (make directory) to create new 
directories. The Change directory command (CD) provides a way for one to change from 
one directory to another.  If your currently at the A:\ > prompt you are at the root 
directory. Issuing a CD \GAMES command will move you into the A:\GAMES> 
directory.  Delete directories with the command RMDIR which literally stands for 
“remove directory”. Its syntax is the same as the MKDIR command which can be used to 
crate a directory.  

 



 60 

File System Basics 

File naming conventions follow the eight-dot-three pattern. The first part of the 
name can be eight characters or less, followed by a period, and then a three character file 
extension. (See Figure 5.) From a security point of view, it is important to understand 
what happens with file deletion. When a file is deleted two things occur the FAT table 
entry is zeroed out, and the first character if the directory entry filename is changed to a 
special character. (Note nothing is done to the physical file.)  By removing the entry in 
the FAT and directory tables, the operating system knows it can use that free space. But 
with the physical file never being touched, it is easy to recover. To recover the file all that 
needs to be done is to relink the FAT table to the data area where the file is stored, and 
change the directory entry filename back to a legal character.  

 

Figure 5. File naming specifications 

Common Commands 

 Listed below are some of the more commonly used DOS commands [6]. 

DATE -Enters or displays date. 

TIME - Enters or displays time. 

DIR - Displays a list of files and subdirectories in a directory. 

CLS - Clears your screen. 

CD – Change Directory  

VER – Displays version number 

TREE – Display all directory paths 

MKDIR – Creates a subdirectory 

RMDIR - Removes a subdirectory 

COPY - Copies files 



 61 

SORT – Sorts files 

ERASE – Deletes files 

FORMAT – Formats diskettes / disks 

RENAME – Renames files 

VER – Displays version of DOS 

 

Redirecting Commands 

 DOS defaults to accepting standard input from the keyboard and standard output 
to the video display. DOS also has the ability to redirect this data by using a process 
called piping.   

Three symbols are used to accomplish piping: |, <, >. Think of the greater than 
symbol (>) as the sent to, the less than symbol (<) as the receive from, and the vertical 
bar (|) is the pipe symbol allows commands to be chained together.   

 DIR > PRN                                   //redirects a DIR command to the printer  

 DIR > myfile.txt   //redirects a DIR command to a file 

 myfile.txt < input.txt     //redirects file input.txt to myfile.txt 

 myfile.txt | SORT | sorted.txt  //myfile.txt gets sorted then piped to  
  sorted.txt file 

Global Filename Characters  

Two special characters, ? and * can be used as wildcards.  The question mark 
indicates that any character can occupy that position, and the * character indicates that 
any character can occupy that position and all remaining positions in the filename or 
extension. 

Reserved Device Names 

 Reserved device names are used for common input output devices. They are 
useful with redirect and piping commands. A list of reserved device names appears below 
in Table 2. 

 
Table 2. Device names 

Reserved Name                 Device 

CON Console keyboard Screen  

AUX or COM1 1st Com Port 

COM2 2nd Com Port 

LPT1 or PRN 1st Parallel Printer  

LPT2 or LPT3 2nd & 3rd Parallel Printer 

NUL Nonexistent  

  



 62 

The Merits of DOS 

Although DOS has fallen out as a main stream operating system, there is still has 
merit in learning it. Windows was originally built off DOS, and therefore many of the 
same qualities carry over to a Windows environment. Furthermore, the operating system, 
Linux is gaining popularity today. Linux has improved on many of DOS’s short comings.  
For example, Linux supports multi-users, multi-tasking, and improved security features. 
Interesting enough, many of the DOS commands are similar to Linux commands.  

References: 

 

[1] Mueller's, Scott (1999). Upgrading and Repairing PCs Eleventh Edition. 
Indianapolis, Indiana: QUE. 

[2] Patterson, Tim (1983,June). An Inside Look at MS-DOS. Byte Magazine, Retrieved 
Sept 25,2006, from http://www.patersontech.com/Dos/Byte/InsideDos.htm 

[3] Conventional memory. In Wikipedia [Web]. Retrieved Sept 25,2006, from 
http://en.wikipedia.org/wiki/Conventional_memory 

[4] Wyatt, Allen, & Tiley, Edward (1993). Using MS-DOS 6.2.Que Corporation. 

[5] File Allocation Table. File Allocation Table. In Wikipedia [Web]. Retrieved Oct 1, 
2006, from http://en.wikipedia.org/wiki/FAT32 

[6] Gookin, Dan (1998). DOS for Dummies 3rd edition. Foster City, CA: IDG Books 
Worldwide, Inc. 

 



 63 

Chapter 7: Introduction to Linux 

The Revolution 

 On the surface, Linux is a new, revolutionary open source Unix-based operating 
system. It is extremely popular today, and is quickly becoming a household name. 
Linux is similar to the Internet in that it is not an overnight success. Like the Internet, 
Linux too is also more than thirty years in the making. The story begins in 1969 with 
the birth of Unix, AT&T’s flagship operating system began. Unix not only became 
popular in the AT&T realm, but in the world of education as well, due to the fact it was 
written in the high level language C. AT&T permitted free academic access to the 
source code and by 1976, it was being taught in operating system classes at the 
university level. As university popularity caught on to Unix, AT&T pulled the source 
code from universities texts because it revealed too much of Bell Lab's proprietary 
code.  

 The start of collaborative programming arrived with the academic variant of 
Unix known as Berkeley Systems Distribution (BSD), started at the University of 
California. As the BSD collaborative project reached worldwide popularity and 
proportions, so did the lawsuits between AT&T and the university, over intellectual 
property rights to the code during the late 1970's and into the 1980's [1]. In the midst of 
this legal mess, Richard Stallman of Massachusetts Institute of Technology wrote a 
portable operating system that was free from the constraints of intellectual property 
rights. The operating system was named GNU meaning, “GNU's Not Unix”, and was 
licensed under the GNU General Public License (GLP) agreement. This started the 
birth of the free software movement. Around 1990, the GNU project consisted of a 
suite of programming tools such as editors, compliers, and file utilities that could be 
freely complied and used on any Unix system. The GNU movement had developed 
everything, except the kernel.   

 At this time, Unix was gaining popularity on the commercial front with 
corporate customers. Sun, Hewlett-Packard, and IBM offered proprietary Unix-based 
operating systems. In 1991, and Finnish university student Linus Torvalds enters the 
picture [2]. Torvalds started a hobbyist project to teach himself the C programming 
language and operating system concepts. He originally used Minux, a system similar to 
Unix, that was used for teaching operating system design. His search for a Minux 
replacement is where the Linux kernel was born. He published the kernel’s source code 
on the Internet for public collaboration and by adapting GNU libraries to Linux kernel, 
created a full function free GNU/ Linux operating system.   

Why Learn Linux? 

With almost 70% of the servers on the Internet being Unix or a Linux variants, 
this makes the knowledge of Linux important, and offers more flexibility for security 
professionals [3].  In addition to requiring Linux knowledge to secure Linux servers, 
Linux provides the security professional with an unlimited number of security tools and 
utilities they can utilize. In fact, with the Linux kernal being so small in size, distributions 
fit right onto a CD and some can even be modified to fit on a USB memory stick. This 
enables the Linux operating system to self boot, without requiring installation on the hard 



 64 

drive. This offers flexibility when a system won’t start, since one can simply boot off a 
stand alone CD. Many security tools such as network detection, penetration testers, and 
forensic tools are simply booted from the CD in order to execute.  

The Linux operating system has evolved into a true multi-user and multi-tasking 
environment. Today, it has blended between hardcore command-line Unix type, and the 
point-and-click GUI type. It can be used in a simple text form, (small and powerful 
operating systems utilizing only a command line interface), or used with one of the many 
window-like GUI interfaces, such as KDE, or GNOME. Linux is truly a reliable, 
powerful operating system, which makes it a considerable option today. It is also 
affordable, with its strongest selling point being the cost.  

Distributions 

Linux comes in many different flavors, called distributions, or “distro” for short. 
In fact, currently there are more flavors of Linux than of ice cream. Technically, Linux is 
only the core, or kernel, of the operating system, which is by managed by creator Linus 
Torvalds and team. Linux distributions are prepackaged collections of software, generally 
comprising the kernel, and other software such as: compliers, shells, utilities, graphical 
user interface (GUI), and other applications. Thus, a Linux distribution includes the 
Linux kernal, plus bundled software that comprises the operating system. A distribution 
can be comprised of strictly open source (free-of-charge) applications, or commercial 
products, such as Red Hat and SuSE. A distributor (such as Red Hat or SuSE) charges for 
their distribution because they bundle it with service, custom software, and support 
features.       

A Google search in (October 2006), provides an indication of the popularity of the 
different distributions of Linux. Table 1 shows the number of hits each distribution 
produced.  

Table 1. Distribution popularity based on Google search 

 Distribution Google hits 

Linux (generic) 806,000,000 

Red Hat 163,000,000 

SuSE 60,800,000 

Gentoo 30,000,000 

Mandrake 23,600,000 

Slackware 21,800,000 

Knoppix 15,800,000 

Debian 9,870,000 

Turbolinux 3,610,000 

Windows 104,000,000 

DOS 697,000,000 

 

    



 65 

New Linux variants that are increasing in popularity are the live versions. Live 
distributions boot and run completely from CD, not requiring hard drive installation. 
Knoppix is an example of a live distro [4], which has the operating system and numerous 
applications compressed and loaded onto a CD. One simply boots the CD and within 
minutes, has a working desktop at their fingertips. This is excellent for someone who 
desires to learn Linux. There are also many security tools that are built off a live distro. In 
utilizing a live distro, a security professional can boot the CD and easily have hundreds of 
security applications available. Also Knoppix is useful in recovering operating systems 
that are corrupt and cannot boot.  One can simply perform an alternate boot from the 
Knoppix CD and try to mount and recover the corrupt file system.   

File system  

 Linux uses a hierarchical file system, similar to Unix and Windows. If you picture 
a tree upside down, it looks like the file structure with the roots at the top and the 
branches hanging downward. The top directory is fittingly called the “root” and is 
represented by “/”.This tree is just like a family tree, with the directory above your 
current directory, referred to as the “parent”, while the directories below are known as the 
“child” directories. Linux treats everything as a text file and uses a directory structure to 
keep all system files and devices organized. (See Figure 1). Due to the fact that Linux 
supports many additional features, this directory structure is much more complex to 
support additional kernel modules and multi-users. 

 

Figure 1. Basic Linux directory structure 

Directory contents include: 

 /bin  Common commands. 

 /boot Files used at boot time, LILO, or GRUB. 

 /dev Files that represent devices on the system. 

 /etc Administrative files and scripts. 

 /home  Directory for each user on the system. 

 /mnt Provides mount points for external and removable file systems. 

 /sbin Administrative commands and process control daemons. 

 /usr Contains local software, libraries, games, etc. 

 /var  Logs. 



 66 

Another concept used with the file system, is that of relative versus explicit paths. 
When you provide a pathname to a command or file, including a “./” in front of the 
command, it means explicit path. This explicitly lets you define the starting point. If you 
begin, a pathname without a “./” indicates that your path starts in the current directory 
and is referred to as a “relative pathname”.  

File and user permissions 

The word “root” in Linux can mean two things. The root user is the administrator 
of the system. The root directory is the top of the tree. All users have a log-in name and 
password in the system. Users have a defined environment in which to work. Unique 
home directories are assigned to all users, which protects and secures users from one 
another. The “root” user has the highest system permissions available.  Another name for 
the root user is the super-user because the root user can read and write in any directory, 
along with being able to change system characteristics. There are three entities 
concerning file permissions or authorities; owner, group, and other. Every file has an 
owner, the creator of the file. Users belong to one or more groups of users that are 
defined in the system, which comes with predefined groups, such as “system” or “guest”. 
The designation of other allows anyone to access specific files. 

Each directory and file has permissions set individually for the file owner, group, 
or other. These individual permissions are, read, write, and execute. The read permission 
allows users to view the contents of the file write permissions allow modifications and 
deletion of a file, and the execute permission allows the program file to run or execute. 
To display file permissions from a command line, use the list command demonstrated 
below. 

ls –l 
-rw-r--r--  1 joey system 3894 oct 6 15:20 chap7 
 
 If you look at the first ten characters, you have a dash (-) followed by nine more 
characters. The first character describes the file type, a dash (-) indicates a regular file, a 
d indicates a directory, and a l means it is a link. The next nine characters indicate file 
permissions. They are broken down into groups of three, as shown in Figure 2. In the 
above example file chap7, the owner has read and write permissions, but restricts group 
and others to read-only permissions. 

    

Figure 2. File permissions 

 



 67 

Universal naming conventions  

 Linux uses a logical method to name partitions and devices. Most desktop 
computers use an IDE interface for the hard drives and CD-ROM drives. Linux refers to 
the primary master and primary slave IDE devices as /dev/hda and /dev/hdb, respectively 
(hda = hard drive a). On the secondary IDE interface, the master is called /dev/hdc and 
the slave is /dev/hdd.  If the computer contained other IDE interfaces they would 
continue to be named sequentially such as, hde,hdf,hdg, etc.   SCSI devices follow the 
naming convention of /dev/sda, /dev/sdb, etc (sda = SCSI device a) in the order of 
appearance on the SCSI chain. Partitions are named after the disk on which they are 
located,. The primary or extended on a master IDE drive is named /dev/hda1 through 
/dev/hd4, when present. Logical partitions are named /dev/hda5, dev/hda6 etc in the order 
of their appearance in the logical partition table. SCSI devices follow this same naming 
convention as seen in Table 2.   

Table 2. Universal naming conventions [5] 

Devices Linux name 

floppy disk drive /dev/fd0 

second floppy disk drive /dev/fd1 

parallel ports /dev/lp0 

/dev/lp1 

serial ports /dev/ttyS0 

/dev/ttyS1 

 IDE SCSI 

First disk drive (master,IDE-0) 

- primary partition 

- extended partition with three 
logical partitions 

/dev/hda 

/dev/hda1 

/dev/hda5 

/dev/hda6 

/dev/hda7 

/dev/sda 

/dev/sda1 

/dev/sda5 

/dev/sda6 

/dev/sda7 

second fixed disk drive 

- primary partition 

- second primary partition 

- extended partition with two logical 
partitions 

/dev/hdb 

/dev/hdb1 

/dev/hdb2 

/dev/hdb5 

/dev/hdb6 

/dev/sdb 

/dev/sdb1 

/dev/sdb2 

/dev/sdb5 

/dev/sdb6 

 

 

 



 68 

Summary of Linux 

Table 3 summarizes some of the most popular and helpful Linux commands. A 
demonstration of using some of these commands follows the table. After experimenting 
with these commands for a few days, you will become proficient in using them. You may 
even begin to prefer using the command line to a graphical user interface, since many 
“experts” feel they can be more productive and get things done more quickly by simply 
typing commands. 

Table 3. Summary of Linux commands [6] 

 

Command What it does 

  

cd <path> Change the current directory. 

mkdir Create a new subdirectory. 

rmdir Delete an empty subdirectory. 

rm <filename> Removes a file.  

cp <filename> Copies file. 

mv <filename> <pathname> Moves file to the directory. 

ls -l List files in current directory long 
format 

pwd Print current directory (where am I) 

chmod Changes file permissions 

man <command> Online help 

cat Display the contents of a file. 

shutdown –h now Shutdown system now. 

reboot Reboot. 

ps Show processes 

Kill <pid> Terminate process 

df Disk free space status 

 

 

Examples of Linux Commands 

linux:/home/jayme # ls                          /*This lists files in directory*/ 

 

.                             .kde                    .profile 

..                           .kermrc                 psad-1.4.3.tar.gz 

.adobe                    klaxon.tar.gz                  public_html 

anger.tar.gz                         LB1.jpg                       .qt 

.bash_history                        LB2.jpg                       .recently-used 

.bashrc                              LB3.jpg                       samba-latest.tar.gz 

bin                                  LB6.jpg                       samba-tng-0.4.99 

brutus-aet2.zip                      LB7.jpg                       samba-tng0.4.99.tar.gz 

crack5.0.tar.gz                      LB8.jpg                       sara-6.0.7 

.DCOPserver_linux__0                 LBSurfer.jpg                  sara-6.0.7.tgz 

.DCOPserver_linux_:0                 linux30.jpg                   satan-1.1.1 

default.pwl                          linux3.jpg                    satan-1.1.1.tar.gz 

Desktop                              linux42.jpg                   scanlogd-2.2.5.tar.gz 

.dmrc                                linux9.jpg                    shadow 

Documents                            linux6.jpg                    .skel 

.dvipsrc                             .macromedia                   .ssh 

.emacs                               .mailcap                      .sversionrc 



 69 

.exrc                                .mcop                         .thumbnails 

.fonts                               .mime.types                 .urlview 

.fonts.cache-1                       Misc                          .viminfo 

.fonts.conf                          .mozilla                .Xauthority 

.gconf                               .muttrc                 .xcoralrc 

.gconfd                              netcat-0.7.1                .xemacs 

.gnome                               netcat-0.7.1.tar.gz          .xim.template 

.gnome2                              nmap-3.93-1.src.rpm           .xinitrc.template 

.gnome2_private                      OpenOffice.org1.1             .xsession-errors 

.ICEauthority                        opie-2.4.tar.gz         .xtalkrc 

john-1.6                             portsentry-1.2.tar.gz 

john-1.6.tar.gz                      portsentry_beta 

linux:/home/jayme # 

 

linux:/home/jayme # ifconfig                  /* Displays network interface */ 

eth0      Link encap:Ethernet  HWaddr 00:C0:4F:0D:43:F5 

          inet addr:192.168.1.104  Bcast:192.168.1.255  Mask:255.255.255.0 

          inet6 addr: fe80::2c0:4fff:fe0d:43f5/64 Scope:Link 

          UP BROADCAST NOTRAILERS RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:1118 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:903 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1000 

          RX bytes:1347711 (1.2 Mb)  TX bytes:132002 (128.9 Kb) 

          Interrupt:11 Base address:0xdc00 

 

lo        Link encap:Local Loopback 

          inet addr:127.0.0.1  Mask:255.0.0.0 

          inet6 addr: ::1/128 Scope:Host 

          UP LOOPBACK RUNNING  MTU:16436  Metric:1 

          RX packets:74 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:74 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:0 

          RX bytes:5231 (5.1 Kb)  TX bytes:5231 (5.1 Kb) 

________________________________________________________________________________ 

linux:/home/jayme # ifconfig > textfile.txt  /* Pipes the ifconfig into a text file */ 
linux:/home/jayme # ls    /* Lists files notice new textfile.txt */ 

.                                    .kde                        .profile 

..                                   .kermrc                     psad-1.4.3.tar.gz 

.adobe                               klaxon.tar.gz               public_html 

anger.tar.gz                         LB1.jpg                     .qt 

.bash_history                        LB2.jpg                     .recently-used 

.bashrc                              LB3.jpg                     samba-latest.tar.gz 

bin                                  LB6.jpg                     samba-tng-0.4.99 

brutus-aet2.zip                      LB7.jpg                     samba-tng-0.4.99.tar.gz 

crack5.0.tar.gz                      LB8.jpg                     sara-6.0.7 

.DCOPserver_linux__0                 LBSurfer.jpg                sara-6.0.7.tgz 

.DCOPserver_linux_:0                 linux30.jpg                 satan-1.1.1 

default.pwl                          linux3.jpg                  satan-1.1.1.tar.gz 

Desktop                              linux42.jpg                 scanlogd-2.2.5.tar.gz 

.dmrc                                linux9.jpg                  shadow 

Documents                            linux6.jpg                  .skel 

.dvipsrc                             .macromedia                 .ssh 

.emacs                               .mailcap                    .sversionrc 

.exrc                                .mcop                       textfile.txt 

.fonts                               .mime.types                 .thumbnails 

.fonts.cache-1                       .Misc                       .urlview 

.fonts.conf                          .mozilla                    .viminfo 

.gconf                               .muttrc                     .Xauthority 

.gconfd                               netcat-0.7.1               .xcoralrc 

.gnome                                netcat-0.7.1.tar.gz        .xemacs 

.gnome2                               nmap-3.93-1.src.rpm        .xim.template 

.gnome2_private                       OpenOffice.org1.1          .xinitrc.template 

.ICEauthority                         opie-2.4.tar.gz            .xsession-errors 

john-1.6                              portsentry-1.2.tar.gz      .xtalkrc 

john-1.6.tar.gz                       portsentry_beta 

linux:/home/jayme # 

__________________________________________________________________________ 

linux:/home/jayme # cp textfile.txt iptextfile.txt  

                                    /*Copies textfile.txt to iptextfile.txt */ 

linux:/home/jayme # ls              /* Lists files notice new file iptextfile.txt */ 

 



 70 

.                                    john-1.6.tar.gz             portsentry_beta 

..                                   .kde                        .profile 

.adobe                               .kermrc                     psad-1.4.3.tar.gz 

anger.tar.gz                         klaxon.tar.gz               public_html 

.bash_history                        LB1.jpg                     .qt 

.bashrc                              LB2.jpg                     .recently-used 

bin                                  LB3.jpg                     samba-latest.tar.gz 

brutus-aet2.zip                      LB6.jpg                     samba-tng-0.4.99 

crack5.0.tar.gz                      LB7.jpg                     samba-tng-0.4.99.tar.gz 

.DCOPserver_linux__0                 LB8.jpg                     sara-6.0.7 

.DCOPserver_linux_:0                 LBSurfer.jpg                sara-6.0.7.tgz 

default.pwl                          linux30.jpg                 satan-1.1.1 

Desktop                              linux3.jpg                  satan-1.1.1.tar.gz 

.dmrc                                linux42.jpg                 scanlogd-2.2.5.tar.gz 

Documents                            linux9.jpg                  shadow 

.dvipsrc                             linux6.jpg                  .skel 

.emacs                               .macromedia                 .ssh 

.exrc                                .mailcap                    .sversionrc 

.fonts                               .mcop                       textfile.txt 

.fonts.cache-1                       .mime.types                 .thumbnails 

.fonts.conf                          Misc                        .urlview 

.gconf                               .mozilla                    .viminfo 

.gconfd                              .muttrc                     .Xauthority 

.gnome                               netcat-0.7.1                .xcoralrc 

.gnome2                              netcat-0.7.1.tar.gz         .xemacs 

.gnome2_private                      nmap-3.93-1.src.rpm         .xim.template 

.ICEauthority                        OpenOffice.org1.1           .xinitrc.template 

iptextfile.txt                       opie-2.4.tar.gz             .xsession-errors 

john-1.6                             portsentry-1.2.tar.gz       .xtalkrc 

___________________________________________________________________________ 

linux:/home/jayme # rm textfile.txt                         /* removes textfile.txt */ 
linux:/home/jayme # ls                       /* lists files  textfile.txt is removed*/      

.                                    john-1.6.tar.gz             portsentry_beta 

..                                   .kde                        .profile 

.adobe                               .kermrc                     psad-1.4.3.tar.gz 

anger.tar.gz                         klaxon.tar.gz               public_html 

.bash_history                        LB1.jpg                     .qt 

.bashrc                              LB2.jpg                     .recently-used 

bin                                  LB3.jpg                     samba-latest.tar.gz 

brutus-aet2.zip                      LB6.jpg                     samba-tng-0.4.99 

crack5.0.tar.gz                      LB7.jpg                     samba-tng-0.4.99.tar.gz 

.DCOPserver_linux__0                 LB8.jpg                     sara-6.0.7 

.DCOPserver_linux_:0                 LBSurfer.jpg                sara-6.0.7.tgz 

default.pwl                          linux30.jpg                 satan-1.1.1 

Desktop                              linux3.jpg                  satan-1.1.1.tar.gz 

.dmrc                                linux42.jpg                 scanlogd-2.2.5.tar.gz 

Documents                            linux9.jpg                  shadow 

.dvipsrc                             linux6.jpg                  .skel 

.emacs                               .macromedia                 .ssh 

.exrc                                .mailcap                    .sversionrc 

.fonts                               .mcop                       .thumbnails 

.fonts.cache-1                       .mime.types                 .urlview 

.fonts.conf                          Misc                        .viminfo 

.gconf                               .mozilla                    .Xauthority 

.gconfd                              .muttrc                     .xcoralrc 

.gnome                               netcat-0.7.1                .xemacs 

.gnome2                              netcat-0.7.1.tar.gz         .xim.template 

.gnome2_private                      nmap-3.93-1.src.rpm         .xinitrc.template 

.ICEauthority                        OpenOffice.org1.1           .xsession-errors 

iptextfile.txt                       opie-2.4.tar.gz             .xtalkrc 

john-1.6                             portsentry-1.2.tar.gz 

 

linux:/home/jayme # cat iptextfile.txt       /* displays contents of iptextfile.txt */ 

eth0      Link encap:Ethernet  HWaddr 00:C0:4F:0D:43:F5 

          inet addr:192.168.1.104  Bcast:192.168.1.255  Mask:255.255.255.0 

          inet6 addr: fe80::2c0:4fff:fe0d:43f5/64 Scope:Link 

          UP BROADCAST NOTRAILERS RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:1123 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:909 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1000 

          RX bytes:1348023 (1.2 Mb)  TX bytes:132398 (129.2 Kb) 



 71 

          Interrupt:11 Base address:0xdc00 

 

lo        Link encap:Local Loopback 

          inet addr:127.0.0.1  Mask:255.0.0.0 

          inet6 addr: ::1/128 Scope:Host 

          UP LOOPBACK RUNNING  MTU:16436  Metric:1 

          RX packets:74 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:74 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:0 

          RX bytes:5231 (5.1 Kb)  TX bytes:5231 (5.1 Kb) 

 

linux:/home/jayme # 

 

References 

[1] BSD. In wikipedia [Web]. Retrieved Oct. 2006, from http://en.wikipedia.org/wiki/ 
BSD_(operating_system) 

[2]Linux. In wikipedia [Web]. Retrieved Oct. 2006, from 
http://en.wikipedia.org/wiki/Linux 

[3] October 2006 Web Server Survey . Retrieved September 24, 2006, from Netcraft Web 
site: GNU. In wikipedia [Web]. Retrieved Oct. 2006, from 
http://en.wikipedia.org/wiki/GNU 

[4]Live Distro. In wikipedia [Web]. Retrieved Oct. 2006, from 
http://en.wikipedia.org/wiki/LiveDistro 

 [5]Sheer, Paul Rute Users Tutorial and Exposition. Retrieved October 16, 2006, from 
Rute User's Tutorial and Exposition Web site: http://members.toast.net/art.ross/rute/ 

[6]Siever, Ellen (1999). Linux in a Nutshell. Sebastopol,CA: O'Reilly. 



 72 

Chapter 8: Introduction to Security Topics 

 

Now that we have gained a wide array of knowledge in the first seven chapters, 
let’s take it one step further and apply this knowledge to identify and secure a computer 
system. In order to effectively secure a system, we must first understand the 
vulnerabilities common today in order to safeguard against them.  Although threats come 
in many shapes and sizes, the common ones can be classified into the following 
categories:   

Virus is simply a software program that is comprised of two parts, a propagation 
mechanism and a payload. The propagation mechanism is the delivery mechanism that 
spreads or propagates the payload, and the payload is the malicious code that executes 
and does damage, such as deleting hard drive data.  A virus can propagate itself in the 
form of an e-mail attachment.    
 
Worms are very similar to viruses, but the main difference between them is that a worm 
has more emphasis on the propagation mechanism. A worm basically, worms it way 
through a network at a very rapid pace infecting all computers in its path.    
 

Trojan horse is a harmless looking piece of software that can deliver a malicious 
payload. A Trojan can be delivered in the form of an e-mail attachment, and once it is 
opened, can install any threat on the system.  
 

Exploits are software flaws or bugs that can be exploited to overtake a computer system. 
One popular exploit was Microsoft's Internet Explorer web browser buffer overflow. 
Hackers would write data beyond the buffer size, causing an overflow condition. The 
system would then terminate normal processing and start execution of the overflowed 
code. Code could be fed into the overflow execution to take over the system for malicious 
reasons.   
  
Backdoors are alternate hidden doors into a system that are virtually undetected by the 
computer user. An unauthorized person could use a backdoor to gain access to the system 
remotely to steal information or utilize this computer to launch an attack. 
  

Spyware are bugs or cookies that monitor and data mine your internet activity. They can 
become planted on your system by downloading software from questionable sites. 
Although many are harmless, they can pose an unauthorized invasion of your privacy.  
 
Social Engineering such as e-mail fraud, web hoaxes, and phishing scams can be as 
simple as someone calling your house and stating that they’re from your bank then asking 
for your account information. Many people would not trust this person unless they 
personally knew the caller. However, many are fall victim to fake e-mails that link them 
to a hacker’s server that looks and feels like a bank’s server. The only difference is that it 
is a trap to capture your account number and passwords, then to steal all your money [1].  
 
 



 73 

Although the above list of threats is not comprehensive, it provides an adequate 
starting point. The old saying that a chain is only as strong as its weakest link is the 
golden rule of computer security. It is illogical to spend an excessive amount of money 
securing a network, while having a weak password policy in the organization. One must 
formulate an effective, comprehensive, best-security practice that has no weak link. Of 
course, the first problem is determining what the best practices for security are and how 
to implement them. Ask a group of 10 security experts the same question and you will 
probably receive 10 different answers. In general, security “best practices” are a 
consensus of approaches, architectures, and solutions that protect your network, systems, 
and data [2].  
 
 Security threats can be external or internal in nature. The most overlooked threats 
are the internal one, when employees have access to confidential data not required for 
their job responsibilities, or something as silly as a posted note with their passwords 
written on it. Most security professionals have their guard up against external attacks and 
overlook or give too much trust to employees. Stealing company information can occur in 
low-tech or no-tech situations.  The steps suggested below will help improve the overall 
security of a desktop computer system. 
 
1. Set good passwords  

 

 Make passwords at least 8 characters long, using numbers, letters, and symbols. 
Pass phrases are encouraged such as “That’$ one $mall $tep for man, one giant leap for 
mankind” Notice the symbol substitution for the letter “s”. Do not use words found in the 
dictionary. Change your password monthly or at least every other month. 
 
2. Keep your software updated  

  

For a Windows-based system, simply go to Microsoft’s web site 
(http://www.microsoft.com/downloads) and download the service packs and the latest 
security updates. This process can be automated by using automatic updates which 
downloads recommended updates and installs them on a schedule set by the user. 
Microsoft security patches come out on the second Tuesday of every month [3]. 
 

3. Run anti-virus software. 

   

Install and run antivirus software on a weekly basis. It is also important to update 
your antivirus software with the last virus definitions. Symantec and McAfee are popular 
commercial products, while Grisoft’s AVG and ALWIL avast offer free home editions. 
 
4. Run anti-spyware programs 

  

Anti-spyware programs scan the system similar to a virus scan program, only they 
identify and remove spyware. Popular anti-spyware scanners include Lavasoft’s Ad-
Aware, Spybot Search & destroy, Spy Sweeper and Ewido.  
 



 74 

5. Run a personal firewall  

  

A firewall is designed to prevent unauthorized actions on a system. Firewalls can 
be hardware or software. There are many choices in software firewalls, Microsoft has 
bundled one directly into their XP operating system. Symantec’s Norton’s Personal 
Firewall and ZoneAlarm Pro are a few of the many commercial software firewalls [4]. 
  
6.  Do not use peer-to-peer file sharing software 

 

 Installing programs such as KaZaA, Gnutella, or BitTorrent are only going to 
invite trouble. First of all you are downloading from untrusted sites, so the probability of 
downloading a threat are high, and you are giving others access to your share folder and 
files. Neither action is recommended.   
 
7.  Don't open e-mail or attachments from unknown sources  

 

Computer users should never open unexpected attachments. Many viruses arrive 
as executable files that are harmless until they are opened. Many common types of file 
attachments such as jpeg’s or zip’s are used for spreading viruses.  
 

8. Be cautious of unsolicited messages.   
 

Even though you may recognize the name of the sender, scam artists can use 
spoofing tactics to get personal information from you. Never give out your ID, password, 
credit card or social security number in response to an unsolicited request. It is almost a 
known fact that banks, credit card companies, ISP’s, and big commercial websites such 
as eBay, or Amazon won’t be soliciting information from you. You can download a free 
anti-phishing toolbar to protect against this at http://toolbar.netcraft.com/.  
 
9. Create a Process History 

  
First, baseline your system by benchmarking and documenting all the processes 

that are running on the computer before trouble starts. This will give you a point of 
reference when something does happen. You can easily print all the current processes 
running with one command on Microsoft’s XP operating system [5] as shown in Figure 
1. Simply follow these commands: 

 
   Open the Command prompt window:      
 Start ���� Run,   

type cmd in the text field of the dialog box, and then OK to run. 
 

To see list of active tasks running on your system: 
 type tasklist  /nh (at the command prompt) (reference figure 1 for output). 
or to redirect to a printer: Tasklist  /nh |sort >prn: 

 or to redirect to a file: Tasklist  /nh |sort >ProcessFile.txt 

 



 75 

 

 
                                 

Figure 1. Listing processes with Tasklist /nh 

 
10. Limit access to your system 

 

 Turn off file and print sharing. 
 Do not sign on as root or administrator except when absolutely necessary.  
 Turn off all unneeded services [6].  
 

In summary, securing a computer can be accomplished through three processes: 
preventative measures, detection, and incident response [7]. Still, information security is 
an evolving science. There is no one-size-fits all solution.  One cannot even rely on one 
vendor of software or hardware to provide a solution. You must sleep with one eye open, 
have a response plan, a contingency plan and maybe even another fail safe back-up plan. 
Although you maybe protected today, you never know what tomorrow will bring.      
 
References 

 

[1] Volonino, L, & Robinson, S (2004). Principles and Practice of Information 

Security.Upper Saddle River New Jersy: Prentice Hall. 

[2] InfoWorld. Retrieved October 17, 2006, from Security best practices Web site: 
http://www.infoworld.com/article/02/03/15/020318opsecurity_1.html?Template=/storypa
ges/printfriendly.htm 

[3] MicroSoft Download center. Retrieved October 17, 2006, from Download Center 
Web site: http://www.microsoft.com/downloads/Search.aspx?displaylang=en 

[4] Skoudis, Ed, & Zelter, Lenny (2004). Malware Fighting Malicious Code.New Jersey: 
Prentice Hall. 



 76 

 

[5] Tittel, Ed (2005). PC Magazine Fighting Spyware, Viruses, and Malware. 
Indianapolis,IN: Wiley Publishing, Inc.  

[6] SANS InfoSec Reading Room - Best Practices . Retrieved October 17, 2006, from 
SANS Institute Web site: 
http://www.sans.org/reading_room/whitepapers/bestprac/?portal=ad0c4de7cea371f43cca
2e453b840584 

[7] Computer Insecurity. In Wikipedia [Web]. Retrieved Oct 17,2006, from 
http://en.wikipedia.org/wiki/Computer_insecurity 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 77 

Chapter 9: Conclusion 

 

Purpose 

 

 The goal of this paper was to provide a foundation for the course, Computer 
Organization (68-500), as conveyed in the title, “Computer Architecture, Using a 

Thorough, Concise, Step-by-Step Approach: A Course for Newcomers to the Information 

Security Field”. This is a text unlike any other conventional computer science texts 
because it is specifically tailored to non-technical students pursuing a career in computer 
information security. It represents a fresh approach by using comprehensive overviews to 
convey fundamental concepts. The chapters are organized in a manner that is easy to 
follow, and presented so that topics build upon one another, to solidify and reinforce 
previously learned concepts. Despite the fact that it is tailored to non-technical students, 
it also benefits anyone by teaching a foundation skill set to help students succeed in an 
information security career. This work provides a single text that the instructor may use 
to present all the concepts that are relevant to an understanding of information security. 
 

Methodology summary  

  

 This paper incorporates and accentuates the strengths of the skill set that the 
current Computer Organization (68-500) course strives to convey. Starting with Chapter 
1, it incorporates topics such as historical hardware evolution, hardware terminologies, 
and technological advancements. Chapter 2 concentrates on how data is represented to 
hardware and software components and how to convert between decimal, hexadecimal, 
binary, and character data. Chapter 3 takes an in-depth view into concepts introduced in 
Chapter 1, by looking closely at what really happens inside the CPU and at the register 
level. Chapter 4 introduces an overview of the operating system and how it interfaces 
with the hardware. Chapter 5 covers many digital electronic concepts used in the current 
course. The remaining chapters 6, 7, and 8 are designed to overcome the weaknesses in 
the current course. Although Linux (chapter 7) was introduced in the current course, it 
was not covered thoroughly enough to be beneficial. Chapter 6, DOS is introduced as a 
learning tool to those who are not well-versed in command line interface operating 
systems. It also provides a natural stepping stone into Linux, yet is valuable to the 
security field by introducing concepts that apply specifically to security. Furthermore, 
Chapter 6 concepts can be applied to Windows operating systems. In chapter 7, Linux, 
covers details of the structure, common commands, and commands used in security. 
Chapter 8 is a short introduction into security issues that provides a step-by-step “best 
practices” for a windows system.      
 

Achieved the purpose 

 

 I feel that this text, along with the accompanying course will achieve its purpose 
of level setting all new students in the information security program. It will provide a 
foundational skill set to students with a non-technical background or no prior work-
related experience in the computer field. After completing all the courses in this 
information security program except one, I know this text will provide an excellent 



 78 

springboard into the following courses in the major. This will provide students with an 
easier transition into advanced courses. The accompanying Table 1 Skills Matrix 
illustrates the core skill set and how these skills can be applied to the corresponding 
classes. 

 Table 1. Skills matrix 
 

  

The final test to the effectiveness of this text will be to employ it in 68-500 and 
evaluate student and instructor attitudes toward it in a formal evaluation. The course will 
be designed to explore the various key concepts conveyed in each chapter. Afterwards, 
students and instructors will rate the course and the text through the standard course 
evaluation forms, and provide written suggestions for improvements or additions to the 
course material.    

Skills matrix 

Skills Courses 

Courses Data 

Networks 

68-510 

Operating 

Systems 

68-515 

Intrusion 

Detection 

68-520 

 

Encryption 

68-525 

Securing 

Windows 

68-560 

Securing 

Linux 

68-561 

Securing 

Database 

68-563 

General 

HW 

terminology 

X X X  X X  

General SW 

terminology 

X X X X X X X 

Operating 

System 

Concepts 

X X X  X X X 

Hierarchical 

Directory 

Structures 

X X X  X X X 

Numbering 

systems 

X X X X X X  

Boot 

Process 

 X   X   

Process / 

Job 

scheduling 

 X X  X X X 

Boolean 

logic 

X X  X  X X 

Common 

commands 

X X X  X X X 

Command 

Line 

Interface 

X X X  X X X 

Security 

Concepts 

X X X X X X X 


